PRESERVING HERITAGE THROUGH MATHEMATICS: AN ETHNOGRAPHIC EXPLORATION OF GEOMETRY PRINCIPLES IN BATIK CEPLOK SOGAN SOLO MOTIF

Mutiara Hisda Mahmudah
Berliani Ardelia Sukowati
Ismiyati Ismiyati
Naufal Ishartono


DOI: https://doi.org/10.29100/jp2m.v11i2.7720

Abstract


Batik Ceplok Sogan Solo is one of the traditional batik motifs that has a distinctive golden brown color produced from natural dye of soga tree bark (Peltophorum pterocarpum), but it is less known by the younger generation. Therefore, the integration of batik in mathematics learning is one of the strategies to introduce the batik culture. This research aims at mathematical concepts such as geometry, algebra, arithmetic, and statistics in solo ceplok sogan batik motifs. This research uses qualitative ethnography. The subject of this research is the Solo Ceplok Sogan batik motif. Data validity was obtained through source triangulation, while data analysis included reduction, presentation, and conclusion drawing. The exploration process was carried out by answering four main questions, namely “where do I start looking?”, “How do I find it?”, “How do I recognize that it has found something significant?”, and “How do I understand what it is?”. The results show that of the four math concepts, only one, geometry, was found in this batik. Sub-concepts of flat geometry (quadrilateral and circle), and sub-concepts of plane geometry (congruence and straight line segment), as well as sub-concepts of transformation geometry (dilation, reflection, and translation). These findings can be integrated into mathematics learning through the development of ethnomathematics-based assessments oriented towards High Order Thinking Skills.

Keywords


Batik Ceplok Sogan; Math Concepts; Ethnomathematics

Full Text:

PDF

Article Metrics :

References


Ascher, M. (1991). Ethnomathematics: A multicultural view of mathematical ideas. In New York : Chapman & Hall. https://doi.org/https://doi.org/10.1201/9780203756522

Barton, B. (1996). Making sense of ethnomathematics: Ethnomathematics is making sense. Educational Studies in Mathematics, 31, 201–233. https://www.jstor.org/stable/3482940

Berg, M., Cheong, O., Kreveld, M., & Overmars, M. (2008). Computational Geometry: Algorithms and Applications (3rd ed.). https://doi.org/10.1007/978-3-540-77974-2

Candra, E. N., Djatiprambudi, D., & Mariasa, I. N. (2024). Kajian estetika batik sawunggaling surabaya. Jurnal Kajian Seni, 11(01), 61–80. https://doi.org/10.22146/jksks.95341

Cummins, J., Kennedy, P., & Yunker, L. (2005). Geometry: Concepts and Applications. McGraw-Hill Education. https://doi.org/10.1002/9781405198431.wbeal0306

D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44–48. https://www.jstor.org/stable/40247876

D’Ambrosio, U. (2021). What Is Ethnomathematics, and How Can It Help Children in Schools? National Council of Teachers of Mathematics, 7(6), 308–310. https://doi.org/10.5951/TCM.7.6.0308

Elliott, I. M., & Brake, B. (2004). Batik: Fabled Cloth of Java. Periplus. https://lib.ui.ac.id/detail?id=20417508&lokasi=lokal

Ervinawati, Y. (2019). Ethnomathematics: Mathematical Exploration on Batik Gedog Tuban. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika (JRPIPM), 3(1), 24. https://doi.org/10.26740/jrpipm.v3n1.p24-35

Evita, Y. N., Trihartono, A., & Prabhawati, A. (2022). Pengakuan UNESCO Atas Batik Sebagai Warisan Budaya Tak Benda (WBTB). Majalah Ilmiah Dian Ilmu, 21(2), 113. https://doi.org/10.37849/midi.v21i2.260

Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, Rustamaji, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1). https://doi.org/10.1088/1742-6596/1720/1/012013

Febriani, R., Knippenberg, L., & Aarts, N. (2023). The making of a national icon: Narratives of batik in Indonesia. Cogent Arts and Humanities, 10(1), 1–16. https://doi.org/10.1080/23311983.2023.2254042

Fitri, N. L., & Prahmana, R. C. I. (2020). Designing a learning trajectory of the circle using the context of a Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961

Habibie, A. F., Sahfitri, F. N., & Mandalika, W. D. (2023). Media Pembelajaran Interaktif “Batik Pedia” Berbasis Aplikasi Android Pada Ensiklopedia Batik Nusantara. Jurnal Komputer Teknologi Informasi Dan Sistem Informasi (JUKTISI), 2(2), 326–338. https://doi.org/10.62712/juktisi.v2i2.75

Hakim, L. M. (2018). Batik Sebagai Warisan Budaya Bangsa dan Nation Brand Indonesia. Nation State: Journal of International Studies, 1(1), 61–90. https://doi.org/10.24076/nsjis.2018v1i1.90

Harahap, L., & Mujib, A. (2022). Eksplorasi Etnomatematika pada Motif Batik Nagori Kuantan Singingi. Journal Ability : Journal of Education and Social Analysis, 3(2), 61–72. https://doi.org/https://doi.org/10.26618/sigma.v14i2.9457

Indonesia, B. P. S. (2024). Statistik Indonesia (2024). Statistical Yearbook of Indonesia 2024 Vol. 52, 2024. In Statistik Indonesia 2023 (Vol. 52, pp. 1–852). https://doi.org/03200.24003

Ishartono, N., & Ningtyas, D. A. (2021). Exploring Mathematical Concepts in Batik Sidoluhur Solo. International Journal on Emerging Mathematics Education, 5(2), 151. https://doi.org/10.12928/ijeme.v5i2.20660

Kemensetneg. (2022). Gelorakan Wastra Indonesia, Kementrian Sekretariat Negara Indonesia Siapkan Suvenir KTT G20. Kementerian Sekretariat Negara Republik Indonesia. https://setneg.go.id/baca/index/gelorakan_wastra_indonesia_kemensetneg_siapkan_suvenir_ktt_g20

Kerlogue, F., & Sosrowardoyo, T. (2004). Batik: Design, Style & History. Thames & Hudson. https://www.goodreads.com/book/show/1598301.Batik

Kusuma, A. B., Hanum, F., Abadi, A. M., & Ahmad. (2024). Exploration of Ethnomathematics Research in Indonesia 2010-2023. Infinity Journal, 13(2), 393–412. https://doi.org/10.22460/infinity.v13i2.p393-412

Lipka, J., Hogan, M. P., Webster, J. P., Yanez, E., Adams, B., Clark, S., & Lacy, D. (2005). Math in a Cultural Context: Two Case Studies of a Successful Culturally Based Math Project. Anthropology & Education Quarterly, 36(4), 367–385. https://doi.org/10.1525/aeq.2005.36.4.367

Lubis, A. N. M. T., & Yanti, D. (2018). IDENTIFIKASI ETNOMATEMATIKA BATIK BESUREK BENGKULU SEBAGAI MEDIA DAN ALAT PERAGA PENYAMPAIAN KONSEP KEKONGRUENAN DAN KESEBANGUNAN. Wahana Didaktika Jurnal Ilmu Pendidikan, 16(3), 267–275. https://doi.org/10.31851/WAHANADIDAKTIKA.V16I3.2103

Miles, M., Huberman, M, Saldana, J. (1994). Qualitative Data Analysis: A Methods Sourcebook. SAGE Publications, 341. https://books.google.co.id/books/about/Qualitative_Data_Analysis.html?id=3CNrUbTu6CsC&redir_esc=y

Mollakuqe, V., Rexhepi, S., & Iseni, E. (2021). Incorporating Geogebra into Teaching Circle Properties at High School Level and Its Comparison with the Classical Method of Teaching. International Electronic Journal of Mathematics Education, 16(1), 1–11. https://doi.org/10.29333/iejme/9283

Musman, A., & Arini, A. B. (2011). Batik: Warisan Adiluhung Nusantara. G-Media.

Nadjib, A. (2018). Analisis Kesalahan Pemahaman Dalam Materi Segiempat Menurut Tingkat Berpikir Van Hiele Pada Siswa SMP Negeri 1 Suppa Kabupaten Pinrang. Jurnal Pepatuzdu, 8(1), 14–23. https://doi.org/10.35329/fkip.v8i1.19

Permita, A. I., Nguyen, T.-T., & Prahmana, R. C. I. (2022). Ethnomathematics on the Gringsing batik motifs in Javanese culture. Journal of Honai Math, 5(2), 95–108. https://doi.org/10.30862/jhm.v5i2.265

Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, indonesia. Journal on Mathematics Education, 11(3), 439–456. https://doi.org/10.22342/jme.11.3.12949.439-456

Qutoshi, S. B. (2024). Ethnography : A Method of Research and Genera of Writing for Informing, Reforming and Transforming Lives. 11(2), 323–331. https://doi.org/https://doi.org/10.22555/joeed.v11i2.1186

Rahmasari, & Mutijah. (2023). Ethnomathematics in Batik Making Activities in Saung Baswet, Banjarsari Wetan Village, Banyumas. International Journal of Research in Mathematics Education, 1(2), 136–150. https://doi.org/10.24090/ijrme.v1i2.9620

Ramelan, T. (2021). Batik Tradisional Jawa: Makna dan Filosofi. Djambatan.

Rizki, N. A. (2018). Lecture Notes of Analytic Geometry (Geometri Analitik). Program Studi Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Mulawarman. https://math.fmipa.unmul.ac.id/archive//nanda/ag.pdf

Rosa, M., & Orey, D. (2011). Ethnomathematics: the cultural aspects of mathematics. Revista Latinoamericana de Etnomatemática, 4(2), 32–54. http://www.revista.etnomatematica.org/index.php/RLE/article/view/32

Rubenstein, R., & Schwartz, R. (1999). The Roots of the Branches of Mathematics. Math Horizons, 6(3), 18–20. https://doi.org/10.1080/10724117.1999.11975091

Sihombing, E. K. R. S., Ritonga, L., Siregar, M. P., & Hutauruk, A. (2024). Penggunaan Etnomatematika pada Batik Humbang dalam Pembelajaran Tranformasi Geometri. Journal on Education, 6(3), 17309–17320. https://doi.org/https://doi.org/10.31004/joe.v6i3.5361

Soemantri, H. (2020). The Symbolism of Batik Motifs in Javanese Culture. Journal of Southeast Asian Studies, 29, 45–60. https://doi.org/10.1017/S0022463400021200

Yuniar, N. (2015). Batik Perekat Hubungan dengan Indonesia. Https://Www.Antaranews.Com/Berita/492481/Wapres-Afrika-Selatan-Batik-Perekat-Hubungan-Dengan-Indonesia?Utm_source=chatgpt.Com.