OPTIMALISASI LITERASI MATEMATIS MAHASISWA CALON GURU BERDASARKAN NILAI UJIAN MASUK: PENDEKATAN PREDIKTIF DAN KLASIFIKASI
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
Azmi, B. N., Hermawan, A., & Avianto, D. (2023). Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 281–290. https://doi.org/10.35746/jtim.v4i4.298
Bhurre, S., Raikwar, S., Prajapat, S., & Pathak, D. (2024). Analyzing and Comparing Clustering Algorithms for Student Academic Data BT - Advances in Computational Intelligence Systems. In N. Naik, P. Jenkins, P. Grace, L. Yang, & S. Prajapat (Eds.), UK Workshop on Computational Intelligence (pp. 640–651). Springer Nature Switzerland.
Bolstad, O. H. (2023). Lower secondary students’ encounters with mathematical literacy. Mathematics Education Research Journal, 35(1), 237–253. https://doi.org/10.1007/s13394-021-00386-7
Buchari, A. (2018). Peran Guru Dalam Pengelolaan Pembelajaran. Jurnal Ilmiah Iqra, 12, 1693–5705.
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623
Dirgantoro, K. P. S. (2018). Kompetensi Guru Matematika Dalam Mengembangkan Kompetensi Matematis Siswa. Scholaria: Jurnal Pendidikan Dan Kebudayaan, 8(2), 157–166. https://doi.org/10.24246/j.js.2018.v8.i2.p157-166
Genc, M., & Erbas, A. K. (2019). Secondary mathematics teachers’ conceptions of mathematical literacy. International Journal of Education in Mathematics, Science and Technology, 7(3), 222–237. https://files.eric.ed.gov/fulltext/EJ1223953.pdf
Haeruman, L. D., Salsabila, E., & Kharis, S. A. A. (2024). The Impact of Mathematical Reasoning and Critical Thinking Skills on Mathematical Literacy Skills. KnE Social Sciences, 2024, 542–550. https://doi.org/10.18502/kss.v9i13.15957
Indriyanti, A. D., Prehanto, D. R., & Vitadiar, T. Z. (2021). K-means method for clustering learning classes. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 835–841. https://doi.org/10.11591/ijeecs.v22.i2.pp835-841
Isnani, T., Handoko, H., & Saluky. (2023). Analysis of Students’ Mathematical Literacy Ability in Solving Mathematical Problems in View of Logical Intelligence. Educational Insights, 1(2), 41–57. https://doi.org/10.58557/eduinsights.v1i2.9
Jahagirdar, S. A. S., R, T., & S H, M. (2023). Regression-Driven Predictive Model to Estimate Learners’ Performance through Multisource Data. 2023 2nd International Conference on Futuristic Technologies (INCOFT), 1–6. https://doi.org/10.1109/INCOFT60753.2023.10425033
Jobson, J. D. (1991). Multiple Linear Regression BT - Applied Multivariate Data Analysis: Regression and Experimental Design (J. D. Jobson (ed.); pp. 219–398). Springer New York. https://doi.org/10.1007/978-1-4612-0955-3_4
Karaboga, H. A., Akogul, S., & Demir, İ. (2022). Classification of Students’ Mathematical Literacy Score Using Educational Data Mining: PISA 2015 Turkey Application. Cumhuriyet Science Journal, 43(3), 543–549. https://doi.org/10.17776/csj.1136733
Laamena, C. M., & Laurens, T. (2021). Mathematical Literacy Ability and Metacognitive Characteristics of Mathematics Pre-Service Teacher. Infinity Journal, 10(2), 259–270. https://doi.org/10.22460/infinity.v10i2.p259-270
Laitochová, J., Uhlířová, M., & Rusnoková, N. (2021). Mathematical Literacy From the Perspective of Prospective Teachers. ICERI2021 Proceedings, 1, 1710–1715. https://doi.org/10.21125/iceri.2021.0465
Liao, T. W., Wang, G., Triantaphyllou, E., Rouge, B., & Chang, P. (2001). A Data Mining Study of Weld Quality Models Constructed with MLP Neural Networks from Stratified Sampled Data. Industial Engineering Research Conference, 6.
Liz-Domínguez, M., Caeiro-Rodríguez, M., Llamas-Nistal, M., & Mikic-Fonte, F. A. (2019). Systematic literature review of predictive analysis tools in higher education. Applied Sciences (Switzerland), 9(24). https://doi.org/10.3390/app9245569
Marill, K. A. (2004). Advanced statistics: linear regression, part II: multiple linear regression. Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine, 11(1), 94–102. https://doi.org/10.1197/j.aem.2003.09.006
Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting long-term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84(4), 1475–1490. https://doi.org/10.1111/cdev.12036
Nguyen, A., Nguyen, D., Ta, P., & Tran, T. (2019). Preservice Teachers Engage in a Project-based Task: Elucidate Mathematical Literacy in a Reformed Teacher Education Program. International Electronic Journal of Mathematics Education, 15(1), 657–666. https://doi.org/10.29333/iejme/5778
OECD. (2023). Program For International Student (PISA) 2022 Assessment and Analytical Framework. In OECD Publishing. https://www.oecd-ilibrary.org/education/pisa-2022-assessment-and-analytical-framework_dfe0bf9c-en
Omiralievna, M. B. (2024). Development and Cultivation of Mathematical Literacy: A Pedagogical Perspective. Eurasian Science Review An International Peer-Reviewed Multidisciplinary Journal, 2(4), 93–99. https://doi.org/10.63034/esr-55
Orsoni, M., Giovagnoli, S., Garofalo, S., Magri, S., Benvenuti, M., Mazzoni, E., & Benassi, M. (2023). Preliminary evidence on machine learning approaches for clusterizing students’ cognitive profile. Heliyon, 9(3), e14506. https://doi.org/10.1016/j.heliyon.2023.e14506
Osic, M. A. (2023). Teachers’ Competence, Classroom Environment, Learning Style of Students: A Structural Model on Mathematical Ability. International Journal on Emerging Mathematics Education, 6(1), 77. https://doi.org/10.12928/ijeme.v6i1.21215
Podungge, R., Rahayu, M., Setiawan, M., & Sudiro, A. (2020). Teacher Competence and Student Academic Achievement. 144(16), 69–74. https://doi.org/10.2991/aebmr.k.200606.011
Rahim, M. E., Gani, M. A., Lestari, M., & Mutmainnah, M. (2023). Gaya Belajar yang Berpengaruh Terhadap Kemampuan Literasi matematis: Literatur Review. Griya Journal of Mathematics Education and Application, 3(2), 303–312. https://doi.org/10.29303/griya.v3i2.320
Rahmanuri, A., Winarni, R., & Surya, A. (2023). Faktor-faktor yang memengaruhi literasi matematis: systematic literature review. Didaktika Dwija Indria, 11(6), 1. https://doi.org/10.20961/ddi.v11i6.78579
Ranjan, R., & Ranjan, J. (2016). Predicting parameters importance in higher education using data analysis: A regression model. Proceedings - 2016 2nd International Conference on Computational Intelligence and Communication Technology, CICT 2016, 605–608. https://doi.org/10.1109/CICT.2016.126
Rivai, A., Lestari, A., Munir, N. P., & Anas, A. (2022). Students’ Mathematical Literacy in Solving PISA Problems Observed by Learning Styles. Jurnal Pendidikan Matematika, 17(1), 121–134. https://doi.org/10.22342/jpm.17.1.19905.121-134
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Sakinah, M., & Avip, P. B. (2021). An analysis of students’ mathematical literacy skills assessed from students’ learning style. Journal of Physics: Conference Series, 1882(1), 0–8. https://doi.org/10.1088/1742-6596/1882/1/012075
Serin, H. (2023). The Significance of Mathematical Literacy in Today’s Society. International Journal of Social Sciences & Educational Studies, 10(2), 396–402. https://doi.org/10.23918/ijsses.v10i2p396
Shahapure, K. R., & Nicholas, C. (2020). Cluster quality analysis using silhouette score. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, 747–748. https://doi.org/10.1109/DSAA49011.2020.00096
Singh, M. K., Rani, A., & Sharma, R. R. (2014). An Optimised Approach For Student’s Academic Performance By K-Means Clustering Algorithm Using Weka Interface. International Journal of Advanced Computational Engineering and Networking, 2(7), 5–9. https://api.semanticscholar.org/CorpusID:212612583
Sugiyono. (2013). METODE PENELITIAN KUANTITATIF, KUALITATIF dan R&D. Alfabeta.
Sümen, Ö. Ö., & Çalışıcı, H. (2016). The Relationships Between Preservice Teachers’ Mathematical Literacy Self Efficacy Beliefs, Metacognitive Awareness And Problem Solving Skills. Participatory Educational Research, spi16(2), 11–19. https://doi.org/10.17275/per.16.spi.2.2
Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills. Sustainability (Switzerland), 12(23), 1–28. https://doi.org/10.3390/su122310113
Tariq, V. N., Qualter, P., Roberts, S., Appleby, Y., & Barnes, L. (2013). Mathematical literacy in undergraduates: role of gender, emotional intelligence and emotional self-efficacy. International Journal of Mathematical Education in Science and Technology, 44(8), 1143–1159. https://doi.org/10.1080/0020739X.2013.770087
Trpin, A. (2023). Classroom Management and the Vital Role of the Classroom Teacher: Insights from Distance Teaching Experiences. Journal of E-Learning Research, 2(2), 39–51. https://doi.org/10.33422/jelr.v2i2.486
Uygur Kabael, T., & Ata Baran, A. (2023). An Investigation of Mathematics Teachers’ Conceptions of Mathematical Literacy Related to Participation in a Web-Based PISA Course. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 12(2), 315–324. https://doi.org/10.14686/buefad.1053557
Yustitia, V., Amin, S. M., & Abadi. (2020). Mathematical literacy in pre-service elementary school teacher: A case study. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012054
Zhang, C. (2011). Research on K-means Clustering Algorithm. Journal of Changchun Normal University. https://api.semanticscholar.org/CorpusID:63573605
Zhou, X., An, J., Zhao, X., & Dong, Y. (2016). Using data mining on students’ learning features: A clustering approach for student classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 20(7), 1141–1146. https://doi.org/10.20965/jaciii.2016.p1141