IMPLEMENTATION OF MACHINE LEARNING IN IMPROVING WEBSITE USER EXPERIENCE AND SATISFACTION

Shiefti Dyah Alyusi - [ https://orcid.org/0009-0009-1323-1645 ]
Imam Yuadi


DOI: https://doi.org/10.29100/jipi.v10i1.7439

Abstract


This research aims to analyze user satisfaction in accessing the Airlangga University library website through the application of machine learning algorithms. The benefit of this research is that it provides insight into improving the quality of digital library services based on data-based analysis. The methods used include user surveys, data preprocessing, and application of the Orange Data Mining with models Support Vector Machine (SVM) and K-Nearest Neighbor (kNN) algorithms to classify user satisfaction levels, as well as comparing the results of the two models. The results show that the SVM model is able to achieve a Recall accuracy of 0.587 in identifying user satisfaction, but the precision metric is greater in SVM and the AUC is greater in kNN so it still requires optimization. This research concludes that the application of machine learning, especially SVM, can be an effective tool for improving user experience and providing more precise recommendations for improving library services.

Keywords


Machine Learning; User Satisfaction; Support Vector Machine; K-Nearest Neighbor

Full Text:

PDF

Article Metrics :

References


H. Dewiyana, “Kompetensi dan Kurikulum Perpustakaan: Paradigma Baru dan Dunia Kerja di Era Globalisasi In-formasi,” 2006. [Online]. Available: https://www.researchgate.net/publication/43983406

A. Fitriansyah and I. Harris, “Pengukuran Kepuasan Pengguna Situs Web Dengan Metode End User Computing Satisfaction (EUCS),” Jurnal Sistem Informasi, p. 1, 2018.

Y. Iqbal Maulana and A. BSI Purwokerto, “Evaluasi Tingkat Kepuasan Pengguna Perpustakaan Digital Nasional (iPusnas) dengan Kerangka PIECES,” Online, 2018.

R. E. Winastwan and A. N. Fatwa, “Peluang Dan Tantangan Perpustakaan Digital Di Masa Pandemi Covid-19: Se-buah Tinjauan Literatur Opportunities And Challenges Of Digital Library In The Covid-19 Pandemic Era: A Litera-ture Review,” 2021.

T. B. Lalitha and P. S. Sreeja, “Recommendation System Based on Machine Learning and Deep Learning in Varied Perspectives: A Systematic Review,” in Lecture Notes in Networks and Systems, Springer Science and Business Media Deutschland GmbH, 2021, pp. 419–432. doi: 10.1007/978-981-16-0882-7_36.

D. Rahma Firmansyah, E. Lestariningsih, and J. Homepage, “Analisis Sentimen Ulasan Aplikasi Smart Campus Unisbank di Google Playstore Menggunakan Algoritma Naive Bayes Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi),” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 2, p. 2024, 2024, doi: 10.35870/jti.

K. S. H. Kusuma Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, and S. Anwar, “Model Klasifikasi Analisis Kepua-san Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree,” JURIKOM (Jurnal Riset Komput-er), vol. 8, no. 6, p. 323, Dec. 2021, doi: 10.30865/jurikom.v8i6.3680.

D. Kawasan, S. Nuklir, B. Tenaga, N. Nasional, and S. T. Selatan, “Meningkatkan Kualitas Layanan Melalui Per-sonalisasi Kebutuhan Informasi Pengguna Di Batan,” 2019.

T. Silvia, S. B. Zainudin Ismail, T. C. Muhamad Akbar, and J. A. Yani No, “ANALISIS KEPUASAN PENGGUNA WEBSITE PERPUSTAKAAN MENGGUNAKAN STRUCTURAL EQUATION MODELLING (SEM),” 2019.

N. Malik and M. Bilal, “Natural Language Processing for Analyzing Online Customer Reviews: A Survey, Taxon-omy, and Open Research Challenges,” Dec. 28, 2023. doi: 10.20944/preprints202312.2210.v1.

V. Mahadik, A. Karne, R. Khalate, S. Chaudhari, S. Chauhan, and U. Student, “User Satisfaction Analysis using Machine Learning,” 2024. [Online]. Available: www.ijrpr.com

H. S. Le et al., “Predictive model for customer satisfaction analytics in E-commerce sector using machine learning and deep learning,” International Journal of Information Management Data Insights, vol. 4, no. 2, Nov. 2024, doi: 10.1016/j.jjimei.2024.100295.

M. Muharrom, “Analisis Penggunaan Orange Data Mining untuk Prediksi Harga USDT/BIDR Binance,” Bulletin of Information Technology (BIT), vol. 4, no. 2, pp. 178–184, 2023, doi: 10.47065/bit.v3i1.

C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Kluwer Academic Publishers, 1995.

S. H. Lee, H. Lee, and J. H. Kim, “Enhancing the Prediction of User Satisfaction with Metaverse Service Through Machine Learning,” Computers, Materials and Continua, vol. 72, no. 3, pp. 4983–4997, 2022, doi: 10.32604/cmc.2022.027943.

T. Wang et al., “Use of Machine Learning to Mine User-Generated Content From Mobile Health Apps for Weight Loss to Assess Factors Correlated With User Satisfaction,” JAMA Netw Open, p. E2215014, 2022, doi: 10.1001/jamanetworkopen.2022.15014.

F. T. Nugraha and H. Hendry, “IMPLEMENTASI MACHINE LEARNING SEBAGAI ANALISIS KEPUASAN PELANGGAN TERHADAP PENGGUNAAN APLIKASI KAI ACCESS,” JIPI (Jurnal Ilmiah Penelitian dan Pem-belajaran Informatika), vol. 8, no. 4, pp. 1248–1255, Nov. 2023, doi: 10.29100/jipi.v8i4.4185.

S. Rihastuti, A. Rosyidi, and M. N. Juniadi, “Prediksi Kepuasan Mahasiswa Terhadap Fasilitas Perpustakaan Menggunakan Algoritma C4.5.”

F. Risyda, M. Mora Purba, and Y. Gardenia, “Aplikasi Mesin Learning Dengan Model Naive Bayes Untuk Evaluasi Kepuasan Mahasiswa Studi Kasus: Perpustakaan Kampus Unsurya.”

O. Baihaqie Islamuddin, I. Yuadi, and K. Kunci, “ANALISIS TEXT CLUSTERING PADA DATA MINING MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN) DAN DECISION TREE,” vol. 11, no. 2, 2023.

D. E. Lailil Muflikhah ; Ratnawati, Buku Ajar Data Mining. UB Press, 2018.

M. P. Dwi Cahyo, Widodo, and B. Prasetya Adhi, “Kinerja Algoritma Support Vector Machine dalam Menen-tukanKebenaran Informasi Banjir di Twitter,” PINTER : Jurnal Pendidikan Teknik Informatika dan Komputer, vol. 3, no. 2, pp. 116–121, Dec. 2019, doi: 10.21009/pinter.3.2.5.

S. Ulum, R. Fahmi Alifa, P. Rizkika, and C. Rozikin, “Perbandingan Performa Algoritma KNN dan SVM dalam Klasifikasi Kelayakan Air Minum.”