SENTIMENT ANALYSIS ABOUT THE 2024 PRESIDENTIAL ELECTION USING CNN METHOD
Abstract
The upcoming 2024 Indonesian General Election (Pemilu 2024) will be interesting news for online media users. With so much news about the election, online media has become one of the most effective media used to guide public opinion. Apart from that, public opinion is that the coverage in online media for each candidate is not balanced or not because a media is considered to have an affiliation with a particular candidate. To prove this opinion, sentiment analysis will be carried out on several online media in order to prove whether people's opinions are correct or not. Although previous research has used various platforms and achieved various levels of accuracy using the Convolutional Neural Network (CNN) and Support Vector Machine (SVM) methods with various features, this analysis will be developed using the Convolutional Neural Network (CNN) method to obtain higher accuracy and will be compared with the Support Vector Machine (SVM) method from the media platforms Detik.com, CNN Indonesia and CNBC Indonesia. The final results prove that the use of the Convolutional Neural Network (CNN) method shows an average combined performance of 65% (Cancidate 1 = 61%, Candidate 2 = 69%, Candidate 3 = 65%) smaller than the performance of the Support Vector Machine (SVM) method. with a combined average of 74% (Candidate 1 = 73%, Candidate Candidate 2 = 77%, Candidate Candidate 3 = 72%). This study provides insights into optimizing sentiment classification techniques for Online Media platforms, emphasizing the importance of leveraging semantic and contextual information in sentiment analysis tasks.
Full Text:
PDFArticle Metrics :
References
M. M. Ismail and K. M. Lhaksamana, "Sentimen Analisis Pada Media Online Mengenai Pemilihan Presiden 2019 Dengan Menggunakan Metode Naive Bayes," e-Proceeding of Engineering : Vol.6, No.2 Agustus 2019, p. 9997, 2019.
L. D. Mahbubah and E. Zuliarso, "ANALISIS SENTIMEN TWITTER PADA PILPRES 2019 MENGGUNAKAN ALGORITMA NAIVE BAYES," 16_ANALISA_SENTIMEN_TWITTER_PADA_PILPRES_2019_MENGGUNAKAN, p. 198, 2019.
N. A. Salsabila, "ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP TOKOH GUSDUR MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE," NUR ADINDA SALSABILA-FST, p. 3, 2022.
S. "ANALISIS SENTIMEN TWITTER BAHASA INDONESIA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK," 5302416006 - Sartini Unnes, pp. 3 - 12, 2020.
A. Alwasi'a, "ANALISIS SENTIMEN PADA REVIEW APLIKASI BERITA ONLINE MENGGUNAKAN METODE MAXIMUM ENTROPY," 14611247 Annisa Alwasi’a, p. 14, 2019.
A. Alwasi'a, "ANALISIS SENTIMEN PADA REVIEW APLIKASI BERITA ONLINE MENGGUNAKAN METODE MAXIMUM ENTROPY," 14611247 Annisa Alwasi’a, pp. 18 - 19, 2019.
W. You, C. Shen, X. Guo, X. Jiang, J. Shi and Z. Zhu, "A hybrid technique based on convolutional neural network and support vector regression for intelligent diagnosis of rotating machinery," Advances in Mechanical EngineeringVolume 9, Issue 6, June 2017, Advanced signature analysis for machine fault diagnosis and prognosis - Research Article, pp. 463 - 473, 2017.
R. FIRMANSYAH, "IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI BUNGA," https://repository.uinjkt.ac.id/dspace/bitstream/123456789/55347/1/REZKY%20FIRMANSYAH-FST.pdf, pp. 19 - 28, 2021.
S. H. Kusumahadi, H. Junaedi and S. Joan, "Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine," Jurnal Informatika: Jurnal Pengembangan IT (JPIT), Vol.04, No.01, Januari 2019, pp. 54-60, 2019.
R. W. Pratiwi, D. D. Apriliani, D. I. Af'idah, S. F. Handayani, K. A. Gian and T. I. Saputra, "PENINGKATAN KETRAMPILAN DIGITAL ENTERPRENEUR BAGI SISWA SISWI SMK," JMM (Jurnal Masyarakat Mandiri) http://journal.ummat.ac.id/index.php/jmm Vol. 6, No. 3, Juni 2022, Hal. 1746-1753, pp. 40 - 46, 2022.
S. F. Pane, A. Owen and C. Prianto, "Analisis Sentimen UU Omnibus Law pada Twitter menggunakan Metode Support Vector Machine," InComTech: Jurnal Telekomunikasi dan Komputer vol.11, no.2, Agustus 2021 http://publikasi.mercubuana.ac.id/index.php/Incomtech, p. 130, 2021.
G. T. SANTOSO, "ANALISIS SENTIMENM PADA TWEET DENGAN TAGAR #BPJSRASARENTENIR MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM)," https://repository.uir.ac.id/16772/, p. 11, 2021.
A. Albadarneh and A. Ahmad2, "Automated Flower Species Detection and Recognition from Digital Images," IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017, p. 144, 2017.
H. Almogdady, D. S. Manaseer and D. Hiary, "A Flower Recognition System Based On Image Processing And Neural Networks," INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 7, ISSUE 11, NOVEMBER 2018, pp. 166 - 173, 2018.
M. -E. Nilsback and A. Zisserman, "A Visual Vocabulary for Flower Classification," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 06) (Vol. 2)., pp. 1447-1454, 2006.
M. -E. Nilsback and A. Zisserman, "A Visual Vocabulary for Flower Classification," 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722-729, 2008.
M. D. Alizah, A. Nugroho, U. Rodiyah and W. Gota, "Sentimen Analisis Terkait Lockdown pada Sosial Media Twitter," IJSE – Indonesian Journal on Software Engineering, Vol.6, No.2, Desember 2020, pp. 223 - 229, 2020.
N. A. Salsabila, "ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP TOKOH GUSDUR MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE," ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP TOKOH GUSDUR MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE, p. 11, 2022.
W. Hidayat, "Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning," JURNAL MEDIA INFORMATIKA BUDIDARMA Volume 5, Nomor 3, Juli 2021, p. 1018, 2021.
G. N. Arviana, "Sentiment Analysis, Teknik untuk Pahami Maksud di Balik Opini Pelanggan," 2021.
Davies and P. Beynon, "Database Systems Third Edition," New York: Palgrave Macmillan., 2004.
I. Pramudiono, "Pengantar Data Mining:Menambang Permata Pengetahuan di Gunung Data," Kuliah Umum IlmuKomputer.ComCopyright © 2003 IlmuKomputer.Com, p. 2.
T. Larose, "Discovering Knowledge in Data: an Introduction To Data Mining," San Fransisco: John Wiley & Sons Inc, p. xvi, 2014.