MODEL RFGS-CS UNTUK MENGATASI HIGH DIMENSIONAL DATA STUNTING KOTA SAMARINDA

Lidya Sari
Taghfirul Azhima Yoga Siswa
Wawan Joko Pranoto


DOI: https://doi.org/10.29100/jipi.v10i1.5997

Abstract


Di Samarinda, Kalimantan Timur, prevalensi stunting terus meningkat, dengan angka mencapai 23,9% pada tahun 2022. Kondisi ini menunjukkan perlunya intervensi lebih efektif untuk mengatasi masalah gizi di wilayah tersebut. Metode klasifikasi data mining dapat memprediksi risiko stunting, namun penelitian sebelumnya menghadapi tantangan  dengan dataset berdimensi tinggi yang dapat mempengaruhi akurasi. Tujuan dari penelitian ini adalah untuk meningkatkan akurasi klasifikasi stunting di Kota Samarinda menggunakan algoritma Random Forest (RF) yang dioptimalkan dengan seleksi fitur Chi-Square dan optimasi parameter Grid Search. Dataset yang digunakan adalah data stunting dari 26 puskesmas di Kota Samarinda tahun 2023 dari Dinas Kesehatan Kota Samarinda. Metode validasi yang digunakan yaitu cross-validation dengan k=10. Hasil penelitian menunjukkan bahwa fitur-fitur seperti BB/U, Tinggi, ZS BB/U, ZS TB/U adalah yang paling signifikan dalam mempengaruhi performa model RF. Model RF dengan seleksi fitur Chi-Square mencapai akurasi sebesar 99.11%, tidak ada peningkatan akurasi setelah penambahan metode optimasi Grid Search. Hasil penelitian ini menunjukkan bahwa model Random Forest (RF), baik dengan maupun tanpa optimasi, efektif dalam mengklasifikasikan data stunting. Keefektifan model ini dalam menangani dataset yang rumit dan kompleks, sehingga diharapkan dapat mendukung kebijakan serta intervensi kesehatan

Full Text:

PDF

Article Metrics :

References


D. A. P. Ramadhan and M. J. Ahmad, “Pertanggungjawaban Negara Terhadap Permasalahan Anak Stunting Di Indonesia,” Civilia J. Kaji. Huk. dan Pendidik. Kewarganegaraan, vol. 3, no. 1, pp. 14–26, 2024, [Online]. Available: http://jurnal.anfa.co.id/index.php/civilia/article/view/1650/1532

S. Handayani, “Save the Nation’s Generation From the Dangers of Stunting,” J. Midwifery Sci. Women’s Heal., vol. 3, no. 2, pp. 87–92, 2023, doi: 10.36082/jmswh.v3i2.1082.

F. Noviasty, R., Mega I., Fadillah R., “EDUWHAP Remaja Siap Cegah Stunting Dalam Wadah Kumpul Sharing Remaja,” J. Ilm. Pengabdi. Kpd. Masy., vol. 4, no. 2, pp. 494–501, 2020, [Online]. Available: file:///C:/Users/HP/Downloads/Documents/458-1-1543-1-10-20210127.pdf

Nety, “OPTIMIS 2024 STUNTING DI KALTIM TURUN HINGGA 12,83%,” PEMPROV KALTIM, 2023. https://www.kaltimprov.go.id/berita/optimis-2024-stunting-di-kaltim-turun-hingga-1283#:~:text=Hasil Survei Status Gizi Indonesia,2021 sebesar 22%2C8%25.

R. Gustriansyah, N. Suhandi, S. Puspasari, and A. Sanmorino, “Machine Learning Method to Predict the Toddlers’ Nutritional Status,” Infotel, vol. 16, no. 1, pp. 1–6, 2024, [Online]. Available: https://ejournal.ittelkom-pwt.ac.id/index.php/infotel/article/view/988

I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 257–265, 2024, doi: 10.57152/malcom.v4i1.1078.

R. A. Azizah, F. Bachtiar, and S. Adinugroho, “Klasifikasi Kinerja Akademik Siswa Menggunakan Neighbor Weighted K-Nearest Neighbor dengan Seleksi Fitur Information Gain,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 605–614, 2022, doi: 10.25126/jtiik.2022935751.

M. S. H. Bhuiyan, N. Al Raian, S. I. Leon, and M. Khan, “Study of Influence of Dimension Reduction of High Dimensional Datasets in Classification Problem,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, no. Iccmc, pp. 147–151, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-00030.

O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, 2022, doi: 10.3390/children9071082.

E. A. Turjo and M. H. Rahman, “Assessing risk factors for malnutrition among women in Bangladesh and forecasting malnutrition using machine learning approaches,” BMC Nutr., vol. 10, no. 1, pp. 1–25, 2024, doi: 10.1186/s40795-023-00808-8.

T. A. Yoga, “DATA MINING - MENGUPAS TUNTAS ANALISIS DATA DENGAN METODE KLASIFIKASI HINGGA DEPLOYMENT APLIKASI MENGGUNAKAN PYTHON,” 2023.

N. F. Sahamony, T. Terttiaavini, and H. Rianto, “Analysis of Performance Comparison of Machine Learning Models for Predicting Stunting Risk in Children ’ s Growth,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. April, pp. 413–422, 2024.

M. M. Islam et al., “Application of machine learning based algorithm for prediction of malnutrition among women in Bangladesh,” Int. J. Cogn. Comput. Eng., vol. 3, no. January, pp. 46–57, 2022, doi: 10.1016/j.ijcce.2022.02.002.

S. M. J. Rahman et al., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLoS One, vol. 16, no. 6 June 2021, pp. 1–11, 2021, doi: 10.1371/journal.pone.0253172.

P. Dewi, P. Purwono, and S. Kurniawan Dwi, “Pemanfaatan Teknologi Machine Learning pada Klasifikasi Jenis Hipertensi Berdasarkan Fitur Pribadi,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 11, no. 3, pp. 377–387, 2022, doi: 10.30591/smartcomp.v11i3.3721.

M. M. Sugiman and H. D. Purnomo, “Prediksi Kegagalan Transformator Daya dengan Metode DGA ( Dissolved Gas Analysis ) Menggunakan Random Forest Berbasis TDCG,” vol. 8, pp. 441–449, 2024, doi: 10.30865/mib.v8i1.7036.