Evaluasi Kinerja Non-Cryptographic Hash Functions (NCHFs) dalam Sinkronisasi Data pada DBMS Oracle dan Postgres
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
K. Nakatani, T.-T. Chuang, and D. Zhou, “Data Synchronization Technology: Standards, Business Values and Implications,” Commun. Assoc. Inf. Syst., vol. 17, p. 44, 2006, [Online]. Available: https://api.semanticscholar.org/CorpusID:9411565
M. B. Kekgathetse, M. B. Kekgathetse, and K. J. Letsholo, “A survey on database synchronization algo-rithms for mobile device,” Article in Journal of Theoretical and Applied Information Technology, vol. 10, no. 1, 2016, [Online]. Available: https://www.researchgate.net/publication/300187546
S. Ram and V. Ramesh, “Management of Heterogeneous and Autonomous Database Systems,” 1999. [Online]. Available: https://api.semanticscholar.org/CorpusID:53774227
E. P. Csirmaz and L. Csirmaz, “Data Synchronization: A Complete Theoretical Solution for Filesystems,” Future Internet, vol. 14, no. 11, Nov. 2022, doi: 10.3390/fi14110344.
D. Emanuel and A. Arévalo, “Hashing: Types, Benefits and Security Issues,” Feb. 2024, [Online]. Availa-ble: https://ssrn.com/abstract=4718938
A. Halevy, A. Rajaraman, and J. Ordille, Data Integration: The Teenage Years. 2006.
P. P. Pittalia, “International Journal of Computer Science and Mobile Computing A Comparative Study of Hash Algorithms in Cryptography,” 2019. [Online]. Available: www.ijcsmc.com
Stinson, Douglas Robert, and Maura Paterson, “Cryptography Theory and Practice Fourth Edition,” 2018. Accessed: Nov. 02, 2023. [Online]. Available: https://www.perlego.com/book/2193350/cryptography-theory-and-practice-pdf
R. Patgiri, S. Nayak, and N. Muppalaneni, Bloom Filter: A Data Structure for Computer Networking, Big Data, Cloud Computing, Internet of Things, Bioinformatics and Beyond. 2021.
A. Mittelbach and M. Fischlin, “Non-cryptographic Hashing,” in The Theory of Hash Functions and Ran-dom Oracles: An Approach to Modern Cryptography, A. Mittelbach and M. Fischlin, Eds., Cham: Springer International Publishing, 2021, pp. 303–334. doi: 10.1007/978-3-030-63287-8_7.
V. Banja, M. Ilić, L. Kopanja, D. Zlatković, M. Trajković, and D. Ćurguz, “The 7th International conference Knowledge management and informatics MICROSOFT SQL SERVER AND ORACLE: COMPARATIVE PERFORMANCE ANALYSIS,” 2021.
S. Andjelic, S. Obradovic, and B. Gacesa, “A performance analysis of the DBMS - MySQL vs Post-greSQL,” Communications - Scientific Letters of the University of Žilina, vol. 10, no. 4. University of Žilina, pp. 53–57, 2008. doi: 10.26552/com.c.2008.4.53-57.
A. Sateesan, J. Biesmans, T. Claesen, J. Vliegen, and N. Mentens, “Optimized algorithms and architectures for fast non-cryptographic hash functions in hardware,” Microprocess Microsyst, vol. 98, Apr. 2023, doi: 10.1016/j.micpro.2023.104782.
A. Helinda, Z. Musliyana, D. R. Y. Tb, M. Dwipayana, J. Suanda, and A. N. Johari, “Performance analysis of heterogeneous database management system (DBMS) synchronization using message digest 5,” in AIP Conference Proceedings, American Institute of Physics Inc., Nov. 2020. doi: 10.1063/5.0027970.
P. F. Tanaem, A. F. Wijaya, A. D. Manuputty, and G. N. Huwae, “Penerapan RESTFul Web Service Pada Disain Arsitektur Sistem Informasi Pada Perguruan Tinggi (Studi Kasus: STARS UKSW),” JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer), 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:225730519
T. Wahyuningsih, A. Iriani, H. Purnomo, and I. Sembiring, “Predicting students’ success level in an exami-nation using advanced linear regression and extreme gradient boosting,” Computer Science and Infor-mation Technologies, vol. 5, pp. 23–31, Apr. 2024, doi: 10.11591/csit.v5i1.p23-31.
T. U. A, S. Jayaram, and S. G. Hegde, “A Brief Study of Computer Network Security Technologies.” 2024.
H. S. Lella, K. Manasa, R. Chattaraj, and S. Chimalakonda, “DBJoules: An Energy Measurement Tool for Database Management Systems,” ArXiv, vol. abs/2311.08961, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:265212964
E. Berger, S. Stern, and J. A. Pizzorno, “Triangulating Python Performance Issues with Scalene,” ArXiv, vol. abs/2212.07597, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:254685810
M. Katsaragakis, L. Papadopoulos, M. Konijnenburg, F. Catthoor, and D. Soudris, “A memory footprint op-timization framework for Python applications targeting edge devices,” Journal of Systems Architecture, vol. 142, p. 102936, 2023, doi: https://doi.org/10.1016/j.sysarc.2023.102936.