IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK UNTUK ANALISIS SENTIMEN BACAPRES 2024 PADA KOLOM KOMENTAR YOUTUBE MATA NAJWA

Dany Eka Saputra
Auliya Rahman Isnain


DOI: https://doi.org/10.29100/jipi.v9i3.5420

Abstract


Indonesia sebagai salah satu negara berpenduduk padat dengan sistem demokrasi, Penelitian ini berfokus pada analisis sentimen terhadap calon presiden dan wakil presiden 2024 melalui komentar YouTube di "Mata Najwa." Memanfaatkan Convolutional Neural Network (CNN) pada 45.736 komentar, penelitian ini mencapai akurasi keseluruhan 91% yang mengesankan. Metode CNN, menggunakan fase arsitektur dan fine-tuning dengan pengoptimal Adam, secara efektif mengkategorikan sentimen ke dalam kelas positif, negatif, dan netral. Kemahiran model dalam menavigasi dinamika bahasa dan fluktuasi opini publik menunjukkan dampak positifnya pada tantangan analisis sentimen dalam konteks politik platform media sosial seperti YouTube. Penelitian ini menyoroti kemanjuran CNN dalam menangani seluk-beluk wacana politik dalam skala besar, menawarkan wawasan berharga tentang sentimen publik selama musim pemilihan.

Keywords


Sentiment Analysis, CNN, Youtube, Mata Najwa, Democratic

Full Text:

PDF

Article Metrics :

References


E. B. Santoso and A. Nugroho, “Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook,” Eksplora Informat-ika, vol. 9, no. 1, pp. 60–69, Sep. 2019, doi: 10.30864/eksplora.v9i1.254.

K. A. B. Permana, M. Sudarma, and W. G. Ariastina, “Analisis Rating Sentimen pada Video di Media Sosial Youtube Menggunakan STRUCT-SVM,” Majalah Ilmiah Teknologi Elektro, vol. 18, no. 1, p. 113, May 2019, doi: 10.24843/mite.2019.v18i01.p17

G. Sanjaya and K. M. Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” vol. 7, no. 3, pp. 9698–9710, 2020

Pozzi, F. A., Fersini, E., Messina, E., & Liu, B. (2017). Sentiment analysis in social networks. Morgan Kaufmann

Cholissodin, I., Sutrisno., Soebroto, A. A., Hasanah, U., & Febiola, Y. I., 2019.Ai, Machine Learning& Deep Learning(Teori & Implementasi).[e-book]Tersediadi:https://www.researchgate.net/profile/Imam-Cholissodin/publication/348003841_Buku_Ajar_AI_Machine_Learning_Deep_Learning/links/5fee9968299bf14088610ab0/Buku-Ajar-AI-Machine-Learning-Deep-Learning.pdf

Hasan Badjrie, S., Pratiwi, O.N. and Anggana, H.D. (2021) Analisis Sentimen Review Customer Terhadap Produk Indihome Dan First Media Menggunakan Algoritma Convolutional Neural Network Review Analysis Sentiment Customer Product Indihome And First Media Using Convolu-tional Neural Network Algorithm.

Ouyang, et al., 2015. Sentiment Analysis Using Convolutional NeuralNetwork. IEEE International Conference on Computer and Infor-mation Technology [online] Tersedia di https://ieeexplore.ieee.org/document/7363395

Simbolon et al., 2021. “ANALISIS SENTIMEN APLIKASI E-LEARNING SELAMA PANDEMI COVID-19 DENGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN CONVOLUTIONAL NEURAL NETWORK”. SEMINASTIKA 2021. DOI: 10.47002/seminastika.v3i1.236.

Irawan, F. A., & Rochmah, D. A. (2022), “Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19,” JURNAL INFORMATIKA, Vol. 9 No. 2 Oktober 2022, Halaman 148~158 ISSN: 2355-6579 | E-ISSN: 2528-2247.

A. Savirani and N. Kurnia, “BIG DATA UNTUK ILMU SOSIAL ANTARA METODE RISET DAN REALITAS SOSIAL,” in Social Science / General, Social Science / Sociology / General, UGM PRESS, 2021, pp. 11–26. [Online]. Available: https://www.google.co.id/books/edition/BIG_DA TA_UNTUK_ILMU_SOSIAL/yHxJEAAAQBAJ ?hl=en&gbpv=1&dq=analisi+sentimen&pg=PA2 13&printsec=frontcover.

Hadjon, R. P. (2014). Implementasi Metode Rest Request pada Youtube Web Services untuk Represntasi Informasi Berbasis Timeline. Jurnal In-formatika.

N. Petty Wahyuningtyas, D. Eka Ratnawati, and N. Yudi Setiawan, “Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K-Nearest Neighbor (K-NN) (Studi Kasus: Pengunjung Kolam Renang Brawijaya),” 2023. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id.

Vaswani, A. et al. (2017) ‘Attention Is All You Need’. Available at: http://arxiv.org/abs/1706.03762.

Hidayatul Qudsi, D. et al. (2019) ‘Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Convolutional Neural Network’, Jurnal teknologi Informasi dan Ilmu Komputer (JTIIK), 8(5), pp. 1067–1076. Available at: https://doi.org/10.25126/jtiik.202184842.

Mikolov, T., Yih, W.-T. and Zweig, G. (2013) Linguistic Regularities in Continuous Space Word Representations. Association for Computational Lin-guistics. Available at: http://research.microsoft.com/en-.

Rahman, M.F. et al. (2017) „Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN)‟, Jurnal Informatika, 11(1), p. 36. Available at: https://doi.org/10.26555/jifo.v11i1.a5452.

Bisong, E. (2019). Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-4470-8_7

S. Arafah and Fathoni, “Sentiment Analysis Pada Masyarakat

Terhadap LRT Kota Palembang Menggunakan Metode Improved K-Nearest Neigh-bor”, Jurnal Media Informatika Budidarma, vol. 6, no. 3, pp. 1554-1561, July 2022.

I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.

I. Mawanta, T. S. Gunawan and Wanayumini, “Uji Kemiripan Kalimat Judul Tugas Akhir dengan Metode Cosine Similarity dan Pembobotan TF-IDF”, Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 726-738, April 2021.

M. I. Fikri, T. S. Sabrila and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter”, SMATIKA, vol. 10, no. 2, pp. 71-76, 2020.

A. Firdaus, “Aplikasi Algoritma K-Nearest Neighbor pada Analisis Sentimen Omicron Covid-19”, Jurnal Riset Statistika (JRS), vol. 2, no. 2, pp. 85-92, Dec. 2022.

N. V. Chawla, K. W. Bowyer, L. O. Hall, & W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.

Wijayanto & Defara, n.d., “Analisis Sentimen Komentar Youtube Mengenai Vaksin Covid-19 Menggunakan Support Vector Machine”, Jurnal Pilar Teknologi, Vol 7, no 1, pp. 25-31, 2022.