PERBANDINGAN AKURASI ALGORITMA C4.5 DAN K-NEAREST NEIGHBORS UNTUK KLASIFIKASI CURAH HUJAN BERDASARKAN IKLIM INDONESIA
Abstract
Indonesia has a dominant tropical climate, which is why it experiences limited temperature variations but diverse rainfall patterns. The variability of rainfall is closely intertwined with the impacts it exerts on various aspects of human life and business activities. Therefore, rainfall information constitutes a crucial aspect in decision-making. However, of course, there is a need for stages and methods to conduct the analysis process. Hence, this study aims to determine the superior method between C4.5 and K-Nearest Neighbors, both of which are algorithms in data mining, for classifying rainfall data. Both algorithms are employed to construct classification models based on relevant attributes. Subsequently, these models are tested and evaluated using various metrics such as Accuracy, Precision, Recall, and F1-Score. In this study, Hyperparameter Tuning is also applied using the RandomizedSearchCV method to obtain optimal parameters that can yield maximum accuracy. The research findings indicate that both algorithms perform well in rainfall classification. When considering the accuracy values obtained with the default parameters of both algorithms, C4.5 exhibits a higher accuracy rate of 81.42%, whereas K-Nearest Neighbors only achieves 78.10%. However, after utilizing the best parameters resulting from the implementation of Hyperparameter Tuning with RandomizedSearchCV, a significant accuracy improvement is observed in K-Nearest Neighbors, which reaches 83.37%. Meanwhile, C4.5's accuracy increases to 82.56%.
Full Text:
PDFArticle Metrics :
References
S. Prawirowardoyo, Meteorology. Bandung: ITB, 1996.
N. Sunarmi et al., “Analisis Faktor Unsur Cuaca terhadap Perubahan Iklim Di Kabupaten Pasuruan pada Tahun 2021 dengan Metode Principal Component Analysis,” Newton-Maxwell Journal of Physics, vol. 3, no. 2, Oct. 2022, [Online]. Available: https://www.ejournal.unib.ac.id/index.php/nmj
S. B. Sipayung, “Dampak Variabilitas Iklim Terhadap Produksi Pangan di Sumatera,” vol. 2, Jun. 2005.
E. Aldrian, “Sistem Peringatan Dini Menghadapi Iklim Ekstrem,” vol. 10, no. 2, Dec. 2016.
H. A. Tambunan and D. Saputra, “Rancang Bangun Aplikasi Prediksi Cuaca Berbasis Android,” Jurnal Bisantara Informatika (JBI), vol. 6, no. 2, 2022.
S. Chodijah, “Strategi Komunikasi Penyampaikan Informasi Iklim Stasiun Klimatologi Sampali Medan Dalam Upaya Meminimalkan Kegagalan Panen Padi Sawah Akibat Iklim Ekstrim,” Persepsi: Communication Journal, vol. 1, no. 1, pp. 55–69, Nov. 2018, doi: 10.30596/persepsi.v1i1.2506.
J. H. Yousif, H. A. Al-Balushi, H. A. Kazem, and M. T. Chaichan, “Analysis and forecasting of weather conditions in Oman for re-newable energy applications,” Case Studies in Thermal Engineering, vol. 13, p. 100355, Mar. 2019, doi: 10.1016/J.CSITE.2018.11.006.
B. Poernomo, R. Dewi, and I. Sari, “Penerapan Data Mining untuk Prakiraan Cuaca di Kota Malang Menggunakan Algoritma Iterative Dichotomiser Tree (ID3),” JOUTICLA, vol. 3, no. 2, 2017.
Irmayani, “Penerapan Algoritma CART Klasisifikasi Sosial Ekonomi Masyarakat Kelurahan Amessangeng,” Jurnal Ilmiah Infor-mation Technology d’Computare, vol. 10, Jul. 2020.
J. Han and M. Kamber, “Designing Data-Intensive Web Applications,” 2006.
P. Meilina, “Penerapan Data Mining dengan Metode Klasifikasi Menggunakan Decision Tree dan Regresi,” Jurnal Teknologi Universi-tas Muhammadiyah Jakarta, vol. 7, no. 1, 2015.
R. Purba, “Data Mining : Masa Lalu, Sekarang dan Masa Mendatang,” vol. 13, no. 1, 2012.
S. Anastassia Amellia Kharis and A. Haqqi Anna Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,” Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, 2022.
A. Al Arif, M. Firdaus, Y. Maruhawa, S. AMIK Riau, and J. Purwodadi Panam, “Perbandingan Metode Data Mining untuk Prediksi Curah Hujan dengan Algoritma C4.5, Naïve Bayes, dan KNN,” Institut Riset dan Publikasi Indonesia (IRPI), pp. 187–197, Jul. 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas
G. Karyono, “Analisis Teknik Data Mining ‘Algoritma C4.5 dan K-Nearest Neighbor’ untuk Mendiagnosa Penyakit Diabetes Melli-tus,” Seminar Nasional Teknologi Informasi, May 2016.
Y. Suwarno, Inovasi di Sektor Publik. Jakarta : STIA-LAN Press, 2008.
E. Turban, Mechine Learning untuk Mengesktraksi dan Mengidentifikasi Informasi yang Bermanfaat. 2005.
B. Santosa, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Andi, 2007.
P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston: Pearson Addison-Wesley., 2006.
M. Wisnu Prihatmono and A. Felicia Watratan, “Implementasi Algoritma C4.5 Menggunakan Python Untuk Klasifikasi Kepuasan Konsumen,” 2019.
Rafiq Amaliyah, “Aplikasi Klasifikasi Citra Kerusakan Aspal Menggunakan Matlab 2013A,” Universitas Gunadarma, 2014.
C. M. Bishop, Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, 2006. [Online]. Available: http://research.microsoft.com
Y. N. Fuada, I. D. Ubaidullah, N. Ibrahim, F. F. Talingsing, N. K. Sy, and M. A. Pramudhito, “Optimasi Convolutional Neural Net-work dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomu-nikasi, & Teknik Elektronika, vol. 10, no. 3, p. 728, Jul. 2022, doi: 10.26760/elkomika.v10i3.728.
R. Siringoringo, “Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE dan K-Nearest Neighbor,” vol. 3, no. 1, 2018.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.