NEWS RECOMMENDER SYSTEM USING HYBRID CONTENT-BASED FILTERING AND COLLABORATIVE FILTERING

Bagus Wicaksono Nurjayanto
Z. K. A. Baizal - [ http://orcid.org/0000-0003-0795-9559 ]


DOI: https://doi.org/10.29100/jipi.v9i1.4256

Abstract


The development of online news services has offered users numerous choices, resulting in information overload. This makes it challenging for users to locate desired news within a spesific timeframe. to adress this, recommender systems have developed to help users discover and select news article.

Keywords


News; Recommender Systems; Hybrid Rec-ommender System; Content-Based Filtering; Collaborative Filtering;

Full Text:

PDF

Article Metrics :

References


S. K. Lee, N. J. Lindsey, and K. S. Kim, “The Effects of News Consumption Via Social Media and News Information Overload on Perceptions of Journalistic Norms and Practices,” Comput. Human Behav., vol. 75, pp. 254–263, 2017, doi: 10.1016/j.chb.2017.05.007.

F. Wu et al., “MIND: A Large-scale Dataset for News Recommendation.”

“applied sciences Context-Aware Recommender System : A Review of Recent Developmental Process and Future Research Direction,” pp. 1–25, 2017, doi: 10.3390/app7121211.

J. M. Chatterjee, Lord Buddha, E. Foundation, S. Jain, A. A. Elngar, and P. Gupta, Recommender System with Machine Learning and Artificial Intelligence, no. March 2021. 2020. doi: 10.1002/9781119711582.

Z. A. Baizal, N. Ikhsan, I. M. K. Karo, R. K. Darmawan, and R. D. Hartanto, “Movie Recommender Chatbot Based on Dialogflow,” Int. J. Electr. Comput. Eng., vol. 13, no. 1, pp. 936–947, 2023, doi: 10.11591/ijece.v13i1.pp936-947.

A. A. Fakhri, Z. K. A. Baizal, and E. B. Setiawan, “Restaurant Recommender System Using User-Based Collaborative Filtering Approach: A Case Study at Bandung Raya Region,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012023.

L. R. H. Arigi, Z. K. A. Baizal, and A. Herdiani, “Context-aware Recommender System Based on Ontology For Recommending Tourist Destinations at Bandung,” J. Phys. Conf. Ser., vol. 971, no. 1, 2018, doi: 10.1088/1742-6596/971/1/012024.

P. Kumar, “Recommendation System Techniques and Related Issues : a survey,” Int. J. Inf. Technol., vol. 10, no. 4, pp. 495–501, 2018, doi: 10.1007/s41870-018-0138-8.

M. J. Awan et al., “A Recommendation Engine for Predicting Movie Ratings Using a Big Data Approach,” Electron., vol. 10, no. 10, 2021, doi: 10.3390/electronics10101215.

A. Darvishy, H. Ibrahim, F. Sidi, and A. Mustapha, “HYPNER: A Hybrid Approach for Personalized News Recommendation,” IEEE Access, vol. 8, pp. 46877–46894, 2020, doi: 10.1109/ACCESS.2020.2978505.

A. Manikantan, “A Hybrid Recommendation System for Video Games: Combining Content-based & Collaborative Filtering,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 9, pp. 1647–1653, 2021, doi: 10.22214/ijraset.2021.38246.

C. Channarong, C. Paosirikul, S. Maneeroj, and A. Takasu, “HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT,” IEEE Access, vol. 10, pp. 56193–56206, 2022, doi: 10.1109/ACCESS.2022.3177610.

O. Kirmemis and A. Birturk, “MoRe: A User Controlled Content Based Movie Recommender With Explanation and Negative Feedback,” WEBIST 2008 - 4th Int. Conf. Web Inf. Syst. Technol. Proc., vol. 2, pp. 271–274, 2008, doi: 10.5220/0001515702710274.

S. Naveed, B. Loepp, and J. Ziegler, “On the Use of Feature-based Collaborative Explanations: An Empirical Comparison of Explanation Styles,” in UMAP 2020 Adjunct - Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, 2020, pp. 226–232. doi: 10.1145/3386392.3399303.

U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam, and S. Luo, “A Review of Content-Based and Context-Based Recommendation Systems,” Int. J. Emerg. Technol. Learn., vol. 16, no. 3, pp. 274–306, 2021, doi: 10.3991/ijet.v16i03.18851.

Q. Li, S. Chu, N. Rao, and M. Nourani, “Understanding the Effects of Explanation Types and User Motivations on Recommender System Use,” Proc. AAAI Conf. Hum. Comput. Crowdsourcing, vol. 8, pp. 83–91, 2020, doi: 10.1609/hcomp.v8i1.7466.

J. Chicaiza and P. Valdiviezo-Diaz, “A Comprehensive Survey of Knowledge Graph-Based Recommender Systems: Technologies, Development, and Contributions,” Inf., vol. 12, no. 6, 2021, doi: 10.3390/info12060232.

L. Narke and A. Nasreen, “A Comprehensive Review of Approaches and Challenges of a Recommendation System,” Int. J. Res. Eng. Sci. Manag., vol. 3, no. 4, pp. 381–384, 2020.

J. Zou and E. Kanoulas, “Towards Question-based High-recall Information Retrieval,” ACM Trans. Inf. Syst., vol. 38, no. 3, 2020, doi: 10.1145/3388640.

J. L. Dobson, “Effect of uniform versus expanding retrieval practice on the recall of physiology information,” Am. J. Physiol. - Adv. Physiol. Educ., vol. 36, no. 1, pp. 6–12, 2012, doi: 10.1152/advan.00090.2011.

M. Nilashi, O. Ibrahim, and K. Bagherifard, “A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques,” Expert Syst. Appl., vol. 92, pp. 507–520, 2018, doi: 10.1016/j.eswa.2017.09.058.

R. D. Badger and M. Kim, “Singular Value Decomposition for Compression of Large-Scale Radio Frequency Signals,” Eur. Signal Process. Conf., vol. 2021-Augus, pp. 1591–1595, 2021, doi: 10.23919/EUSIPCO54536.2021.9616263.