PENJADWALAN RUANG OPERASI RUMAH SAKIT DENGAN METODE NON-DOMINATED SORTING GENETIC ALGORITHM II (NSGA-II)
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, 2002.
Z. Abdelrasol, N. Harraz, and A. Eltawil, Operating room scheduling problems: A survey and a proposed solution framework, in Transactions on Engineering Technologies: Special Issue of the World Congress on Engineering and Computer Science 2013, Springer Netherlands, 2014, pp. 717731. doi: 10.1007/978-94-017-9115-1_52.
R. Aringhieri, P. Landa, P. Soriano, E. Tnfani, and A. Testi, A two level metaheuristic for the operating room scheduling and as-signment problem, Comput Oper Res, vol. 54, pp. 2134, 2015, doi: 10.1016/j.cor.2014.08.014.
R. MHallah and A. H. Al-Roomi, The planning and scheduling of operating rooms: A simulation approach, Comput Ind Eng, vol. 78, pp. 235248, 2014, doi: 10.1016/j.cie.2014.07.022.
J. M. Molina-Pariente, E. W. Hans, J. M. Framinan, and T. Gomez-Cia, New heuristics for planning operating rooms, Comput Ind Eng, vol. 90, pp. 429443, Dec. 2015, doi: 10.1016/j.cie.2015.10.002.
A. Riise, C. Mannino, and E. K. Burke, Modelling and solving generalised operational surgery scheduling problems, Comput Oper Res, vol. 66, pp. 111, Feb. 2016, doi: 10.1016/j.cor.2015.07.003.
R. Guido and D. Conforti, A hybrid genetic approach for solving an integrated multi-objective operating room planning and schedul-ing problem, Comput Oper Res, vol. 87, pp. 270282, Nov. 2017, doi: 10.1016/j.cor.2016.11.009.
A. Brezulianu, L. Fira, and M. Fira, A genetic algorithm approach for scheduling of resources in well-services companies, 2012. [Online]. Available: www.ijacsa.thesai.org
A. Konak, D. W. Coit, and A. E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab Eng Syst Saf, vol. 91, no. 9, pp. 9921007, Sep. 2006, doi: 10.1016/j.ress.2005.11.018.
J. A. Vasconcelos, J. A. Ramrez, R. H. C. Takahashi, and R. R. Saldanha, Improvements in genetic algorithms, IEEE Trans Magn, vol. 37, no. 5 I, pp. 34143417, 2001, doi: 10.1109/20.952626.
Y. Li and Z. Chen, The distributed permutation flowshop scheduling problem: A genetic algorithm approach, 2015. [Online]. Avail-able: http://soa.iti.es.
H. Li and Q. Zhang, Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II, IEEE Transac-tions on Evolutionary Computation, vol. 13, no. 2, pp. 284302, 2009, doi: 10.1109/TEVC.2008.925798.
P. Murugan, S. Kannan, and S. Baskar, Application of NSGA-II algorithm to single-objective transmission constrained generation expansion planning, IEEE Transactions on Power Systems, vol. 24, no. 4, 2009, doi: 10.1109/TPWRS.2009.2030428.
A. H. Wright, Genetic Algorithms for Real Parameter Optimization, 1991, pp. 205218. doi: 10.1016/b978-0-08-050684-5.50016-1.