KLASIFIKASI MULTI-LABEL MENGGUNAKAN METODE MULTI-LABEL K-NEAREST NEIGHBOR (ML-KNN) PADA PENYAKIT KANKER SERVIKS
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
Praningki, T., & Budi, I. (2018). Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN. Creative Information Technology Journal, 4(2), 83. https://doi.org/10.24076/citec.2017v4i2.100.
Global Cancer Observatory. (2020). Global Cancer Observatory Indonesia. Diakses tanggal 4 Oktober 2021. Site: https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf.
Purwoastuti&Walyani. (2015). Ilmu Obstetri & Ginekologi Sosial untuk Kebidanan. Yogyakarta:Pustaka Baru Press.
Dharma, A., Manalu, P., Sinaga, G. S., Siringoringo, R., Palangai, I. S., & Setiawan, K. (2020). Deteksi Pola Pasien Kanker Serviks dengan Algoritma Extra Trees dan K-Nearest Neighbor. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 3(1), 32-36.
Dan Zhu, Hui Zhu, Ximeng Liu, Hui Li, Fengwei Wang, Hao Li, Dengguo Feng, CREDO: Efficient and privacy-preserving multi-level medical pre-diagnosis based on ML-kNN, Information Sciences, Volume 514, 2020, Pages 244-262, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2019.11.041.
Li, S., & Ou, J. (2021). Multi-Label Classification of Research Papers Using Multi-Label K-Nearest Neighbour Algorithm. Journal of Physics: Conference Series, 1994(1). https://doi.org/10.1088/1742-6596/1994/1/012031.
UCI Machine Learning. (2017). Site: https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29.
Aminah, Siti Hawa. (2018). Prediksi Diagnosa Kanker Serviks Berdasarkan Informasi Demografi, Kebiasaan, dan Rekam Medis Menggunakan Algoritma Support Vector Machine. Institut Teknologi Sepuluh Nopember, Departemen Sistem Informasi, Fakultas Teknologi Informasi dan Komunikasi. Surabaya: Departemen Sistem Informasi.
Yu, C., Wu, H., Liu, H. (2020). Smart Device Recognition: Ubiquitous Electric Internet of Things. Germany: Springer Singapore.
Ceylan, Z., & Pekel, E. (2017). BAT algorithm for Cryptanalysis of Feistel cryptosystems. International Journal of Intelligent Systems and Applications in Engineering, 3(2), 82. https://doi.org/10.18201/ijisae.82426.
Kumar, Ajitesh. (2020, September 4). Vitalflux. Diakses pada 2 Juni 2022. Site: https://vitalflux.com/micro-average-macro-average-scoring-metrics-multi-class-classification-python/.
Tarekegn, A. N., Giacobini, M., & Michalak, K. (2021). A review of methods for imbalanced multi-label classification. Pattern Recognition, 118, 107965. https://doi.org/10.1016/j.patcog.2021.107965.).
Brownlee, Jason. Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch. (2016). United States: Machine Learning Mastery.