BANDUNG CITY TRAFFIC CLASSIFICATION MAP WITH MACHINE LEARNING AND ORDINARY KRIGING

Winico Fazry
Sri Suryani Prasetyowati
Yuliant Sibaroni


DOI: https://doi.org/10.29100/jipi.v7i4.3219

Abstract


Congestion is a problem that occurs when the number of vehicles exceeds the capacity of the road and the vehicle speed slows down. This issue is one of the main issues in big cities, including Bandung. In this study, this study aims to reduce traffic congestion in the city of Bandung. The classification process in this study uses the Support Vector Machine (SVM), Naive Bayes, and Ordinary Kriging methods. The data used is traffic counting data from ATCS in Bandung and direct observation. The traffic count data obtained contains 3804 rows. Three experimental scenarios were carried out to validate the effectiveness of the model used, the performance of the first model without oversampling, the performance of the second model with oversampling, and the performance of the third model with hyperparameter adjustment. The experimental results show that the Support Vector Machine method has higher accuracy than the Naive Bayes method, which is 93%, while the Naive Bayes method has an accuracy of 90%. The application of hyperparameter tuning and over-sampling is proven to overcome the problem of data imbalance and get better classification results. In addition, the best classification results are used in making classification maps, namely the Support Vector Machine method, and assisted with ordinary kriging to predict the surrounding area. The results of the congestion classification map show that the southern area of the city of Bandung is more unstable than other areas of the city of Bandung.

Keywords



Full Text:

PDF

Article Metrics :

References


T. Afrin and N. Yodo, A survey of road traffic congestion measures towards a sustainable and resilient transportation system, Sustain., vol. 12, no. 11, pp. 123, 2020, doi: 10.3390/su12114660.

Q. Zhu, Y. Liu, M. Liu, S. Zhang, G. Chen, and H. Meng, Intelligent planning and research on urban traffic congestion, Futur. Internet, vol. 13, no. 11, pp. 117, 2021, doi: 10.3390/fi13110284.

S. S. Prasetiyowati, Y. Sibaroni, and D. Prabangkara, The prediction of optimal route of city transportation based on passenger occupancy using genetic algorithm: A case study in the city of Bandung, Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 3, pp. 12011207, 2018, doi: 10.12928/TELKOMNIKA.v16i3.7077.

H. Xiong, A. Vahedian, X. Zhou, Y. Li, and J. Luo, Predicting traffic congestion propagation patterns: A propagation graph approach, IWCTS 2018 - Proc. 11th ACM SIGSPATIAL Int. Work. Comput. Transp. Sci., pp. 6069, 2018, doi: 10.1145/3283207.3283213.

B. Sugara and A. Subekti, Penerapan Support Vector Machine (Svm) Pada Small Dataset Untuk Deteksi Dini Gangguan Autisme, J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177182, 2019, doi: 10.33480/pilar.v15i2.649.

Y. R. Tampubolon, S. M. Nasution, R. A. Nugrahaeni, F. T. Elektro, U. Telkom, and D. Indonesia, BANDUNG MENGGUNAKAN KAMERA CCTV DENGAN ALGORITMA SUPPORT VECTOR MACHINE DESIGN OF APPLICATION FOR DETECTION OF VEHICLE CONGESTION IN BANDUNG USING CCTV CAMERA WITH SUPPORT VECTOR MACHINE.

J. Tang, X. Chen, Z. Hu, F. Zong, C. Han, and L. Li, Traffic flow prediction based on combination of support vector machine and data denoising schemes, Phys. A Stat. Mech. its Appl., vol. 534, p. 120642, 2019, doi: 10.1016/j.physa.2019.03.007.

M. T. Zulfikar and Suharjito, Detection traffic congestion based on twitter data using machine learning, Procedia Comput. Sci., vol. 157, pp. 118124, 2019, doi: 10.1016/j.procs.2019.08.148.

J. Yao and Y. Ye, The effect of image recognition traffic prediction method under deep learning and naive Bayes algorithm on freeway traffic safety, Image Vis. Comput., vol. 103, p. 103971, 2020, doi: 10.1016/j.imavis.2020.103971.

B. Bae, H. Kim, H. Lim, Y. Liu, L. D. Han, and P. B. Freeze, Missing data imputation for traffic flow speed using spatio-temporal cokriging, Transp. Res. Part C Emerg. Technol., vol. 88, no. May 2017, pp. 124139, 2018, doi: 10.1016/j.trc.2018.01.015.

Z. Yi, X. C. Liu, N. Markovic, and J. Phillips, Inferencing hourly traffic volume using data-driven machine learning and graph theory, Comput. Environ. Urban Syst., vol. 85, no. April 2020, p. 101548, 2021, doi: 10.1016/j.compenvurbsys.2020.101548.

E. Alomari, R. Mehmood, and I. Katib, Road traffic event detection using twitter data, machine learning, and apache spark, Proc. - 2019 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Internet People Smart City Innov. SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, pp. 18881895, 2019, doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00332.

H. Al Faritzie, ANALISIS PENGUKURAN DERAJAT KEJENUHAN DAN TINGKAT PELAYANAN RUAS JALAN R . SUKAMTO KOTA PALEMBANG Kota Palembang adalah ibukota provinsi Sumatera Selatan yang merupakan salah satu kota metropolitan di Indonesia . Kota Palembang memiliki luas wilayah 400 , vol. 6, pp. 131141, 2021.

H. Hardiani, Analisis Derajat Kejenuhan dan Biaya Kemacetan pada Ruas Jalan Utama di Kota Jambi, J. Perspekt. Pembiayaan dan Pembang. Drh., vol. 2, no. 4, pp. 181192, 2016, doi: 10.22437/ppd.v2i4.2614.

F. Ali, A. Ali, M. Imran, R. A. Naqvi, M. H. Siddiqi, and K. S. Kwak, Traffic accident detection and condition analysis based on social networking data, Accid. Anal. Prev., vol. 151, no. September 2020, p. 105973, 2021, doi: 10.1016/j.aap.2021.105973.

R. D. Fitriani, H. Yasin, and T. Tarno, PENANGANAN KLASIFIKASI KELAS DATA TIDAK SEIMBANG DENGAN RANDOM OVERSAMPLING PADA NAIVE BAYES (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal), J. Gaussian, vol. 10, no. 1, pp. 1120, 2021, doi: 10.14710/j.gauss.v10i1.30243.

J. Golze, S. Zourlidou, and M. Sester, Traffic Regulator Detection Using GPS Trajectories, KN - J. Cartogr. Geogr. Inf., vol. 70, no. 3, pp. 95105, 2020, doi: 10.1007/s42489-020-00048-x.

R. Gholami and N. Fakhari, Support Vector Machine: Principles, Parameters, and Applications, 1st ed. Elsevier Inc., 2017.

V. Effendy, Sentiment Analysis on Twitter about the Use of City Public Transportation Using Support Vector Machine Method, Int. J. Inf. Commun. Technol., vol. 2, no. 1, p. 57, 2016, doi: 10.21108/ijoict.2016.21.85.

M. Fajar Rizqi, R. Rendian Septiawan, and I. Kurniawan, Implementation of Simulated Annealing-Support Vector Machine on QSAR Study of Indenopyrazole Derivative as Anti-Cancer Agent, 2021 9th Int. Conf. Inf. Commun. Technol. ICoICT 2021, no. Icidm, pp. 662668, 2021, doi: 10.1109/ICoICT52021.2021.9527416.

G. Wang and J. Kim, The prediction of traffic congestion and incident on urban road networks using Naive Bayes classifier, ATRF 2016 - Australas. Transp. Res. Forum 2016, Proc., no. November, pp. 114, 2016.

R. A. Wulandari, Penerapan metode ordinary kriging pada pendugaan kadar karbon monoksida (co) di udara tahun 2020 (studi kasus: pencemaran udara kota surabaya), Progr. Stud. Mat. UIN Sunan Ampel, vol. 2020, 2021.

Q. Jia, W. Li, and D. Che, A Triangulated Irregular Network Constrained Ordinary Kriging Method for Three-Dimensional Modeling of Faulted Geological Surfaces, IEEE Access, vol. 8, pp. 8517985189, 2020, doi: 10.1109/ACCESS.2020.2993050.

D. J. M. Pasaribu, K. Kusrini, and S. Sudarmawan, Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding, Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, pp. 920, 2020, doi: 10.35585/inspir.v10i1.2568.

W. C. Widyaningtyas, A. Adiwijaya, and S. Al Faraby, Klasifikasi Sentiment Analysis Pada Review Film Berbahasa Inggris Dengan Menggunakan Metode Doc2vec Dan Support Vector Machine (svm), eProceedings Eng., vol. 5, no. 1, pp. 15701578, 2018.