IMPLEMENTASI FIREFLY ALGORITHM PADA PENJADWALAN PASIEN OPERASI

Yeni Roha Mahariani


DOI: https://doi.org/10.29100/jipi.v7i2.1671

Abstract


Kedua jenis ilmu kesehatan dan ilmu lainnya dalam bidang yang berbeda, saling berinteraksi. Teknologi dan ilmu kedokteran berkembang sangat pesat dalam konteks pelayanan kesehatan yang memiliki standar minimal. Sistem penjadwalan pasien operasi di rumah sakit merupakan salah satu pelayanan kesehatan yang memiliki permasalahan yang kompleks. Efisiensi dalam penjadwalan pasien operasi diperlukan untuk mencegah keterlambatan atau pembatalan operasi. Tujuan dari penelitian ini adalah untuk memecahkan masalah penjadwalan pasien operasi pada suatu periode perencanaan dengan pendekatan metode Firefly Algorithm (FA). FA dapat mendukung proses penjadwalan dalam komputasi secara efisien sesuai dengan hasil solusi sebagai kandidat penjadwalan. FA dapat menetapkan pekerjaan yang diterima ke sumber daya yang ada seperti dokter, perawat, ruang operasi, maupun peralatan yang digunakan selama tindakan operasi berlangsung, sehingga pekerjaan dapat diselesaikan dengan waktu makespan yang minimum. Hasil dari implementasi algoritma yang diusulkan dapat menyelesaikan masalah penjadwalan pasien operasi di rumah sakit. Implementasi tersebut menghasilkan jadwal pasien yang memiliki waktu makespan minimal dalam berbagai kondisi serta dapat meningkatkan utilitas ruang operasi di rumah sakit sebesar 50,6%.


Keywords


Firefly Algorithm; penjadwalan pasien; optimasi

Full Text:

PDF

Article Metrics :

References


L. Seematter-Bagnoud et al., Comparison of different methods to forecast hospital bed needs, European Geriatric Medicine, vol. 6, no. 3, pp. 262266, Jun. 2015, doi: 10.1016/j.eurger.2014.09.004.

A. Abedini, H. Ye, and W. Li, Operating Room Planning under Surgery Type and Priority Constraints, in Procedia Manufacturing, 2016, vol. 5, pp. 1525. doi: 10.1016/j.promfg.2016.08.005.

A. Riise, C. Mannino, and E. K. Burke, Modelling and solving generalised operational surgery scheduling problems, Computers and Operations Research, vol. 66, pp. 111, Feb. 2016, doi: 10.1016/j.cor.2015.07.003.

D. Min and Y. Yih, An elective surgery scheduling problem considering patient priority, Computers and Operations Research, vol. 37, no. 6, pp. 10911099, Jun. 2010, doi: 10.1016/j.cor.2009.09.016.

I. Fister, X. S. Yang, and J. Brest, A comprehensive review of firefly algorithms, Swarm and Evolutionary Computation, vol. 13, pp. 3446, Dec. 2013, doi: 10.1016/j.swevo.2013.06.001.

R. Aringhieri, P. Landa, P. Soriano, E. Tnfani, and A. Testi, A two level metaheuristic for the operating room scheduling and as-signment problem, Computers and Operations Research, vol. 54, pp. 2134, 2015, doi: 10.1016/j.cor.2014.08.014.

R. MHallah and A. H. Al-Roomi, The planning and scheduling of operating rooms: A simulation approach, Computers and Indus-trial Engineering, vol. 78, pp. 235248, 2014, doi: 10.1016/j.cie.2014.07.022.

J. A. Girotto, P. F. Koltz, and G. Drugas, Optimizing your operating room: Or, why large, traditional hospitals dont work, Interna-tional Journal of Surgery, vol. 8, no. 5, pp. 359367, 2010, doi: 10.1016/j.ijsu.2010.05.002.

B. Cardoen, E. Demeulemeester, and J. Belin, Operating room planning and scheduling: A literature review, European Journal of Operational Research, vol. 201, no. 3, pp. 921932, Mar. 2010, doi: 10.1016/j.ejor.2009.04.011.

P. Landa, R. Aringhieri, P. Soriano, E. Tnfani, and A. Testi, A hybrid optimization algorithm for surgeries scheduling, Operations Research for Health Care, vol. 8, pp. 103114, Mar. 2016, doi: 10.1016/j.orhc.2016.01.001.

R. Guido and D. Conforti, A hybrid genetic approach for solving an integrated multi-objective operating room planning and schedul-ing problem, Computers and Operations Research, vol. 87, pp. 270282, Nov. 2017, doi: 10.1016/j.cor.2016.11.009.

M. K. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab, A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems, International Journal of Industrial Engineering Computations, vol. 1, no. 1, pp. 110, Jun. 2010, doi: 10.5267/j.ijiec.2010.01.001.

J. Wang, H. Guo, M. Bakker, and K. L. Tsui, An integrated approach for surgery scheduling under uncertainty, Computers and In-dustrial Engineering, vol. 118, pp. 18, Apr. 2018, doi: 10.1016/j.cie.2018.02.017.

H. Wang et al., Firefly algorithm with neighborhood attraction, Information Sciences, vol. 382383, pp. 374387, Mar. 2017, doi: 10.1016/j.ins.2016.12.024.

R. K. Sahu, S. Panda, and S. Padhan, A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems, International Journal of Electrical Power and Energy Systems, vol. 64, pp. 923, 2015, doi: 10.1016/j.ijepes.2014.07.013.

A. Yelghi and C. Kse, A modified firefly algorithm for global minimum optimization, Applied Soft Computing Journal, vol. 62, pp. 2944, Jan. 2018, doi: 10.1016/j.asoc.2017.10.032.

K. C. Udaiyakumar and M. Chandrasekaran, Application of firefly algorithm in job shop scheduling problem for minimization of Makespan, in Procedia Engineering, 2014, vol. 97, pp. 17981807. doi: 10.1016/j.proeng.2014.12.333.