DEVELOPMENT AND ANALYSIS OF A MATLAB GUI APPLICATION: AUTOMATIC COLOR DETECTION AND CONVERSION BASED ON RGB VALUES FOR EDUCATIONAL AND DIGITAL DESIGN

Devita Anggraini
Nurin Fitriana - [ https://orcid.org/0000-0001-7939-7853 ]
Bayu Firmanto
As’ad Shidqy Aziz
Jendra Sesoca
Tri Kristianti
Arif Budijanto


DOI: https://doi.org/10.29100/jipi.v10i3.8724

Abstract


The advancement of digital technology necessitates practical solutions for accurate color identification and conversion, particularly in the fields of design, education, and the digital industry. This study aims to develop and analyze an automatic color detection application based on a MATLAB GUI, capable of detecting colors from RGB input values and converting them to Hex, CMYK, and HSV formats. The urgency of this research lies in the need for an efficient, user-friendly application that minimizes errors in the color identification process, as manual methods are often ineffective and prone to mistakes. The methodology employed is Research and Development (R&D), which includes litera-ture review, needs analysis, system design, application implementa-tion, and thorough testing and evaluation of accuracy and usability. Testing results demonstrate that the application can accurately detect and convert colors, with performance consistent with standard applica-tions such as Microsoft Paint, and has received positive feedback from users regarding its intuitive interface. The implications of this research are the availability of a digital tool that supports more efficient design processes, interactive learning, and creative industry workflows, while also opening opportunities for the development of similar applications in the future

Keywords


MATLAB GUI; color detection; RGB conver-sion

Full Text:

PDF

Article Metrics :

References


[1] L. A. García-Delgado et al., “GUI for Analysis of Parameters, Accurate Design and Optimization of Microstrip Filters,” Applied System Innova-tion, vol. 8, no. 1, pp. 1–25, 2025, doi: 10.3390/asi8010004.

[2] A. Dalimunthe, “Deteksi Kematangan Buah Manggis Berdasarkan Fitur Warna Citra Kulit Menggunakan Metode Transformasi Ruang Warna Hsv,” 2021, Universitas Islam Negeri Sumatera Utara Medan.

[3] C. Song et al., “Adaptiveness of RGB-image derived algorithms in the measurement of fractional vegetation coverage,” BMC Bioinformatics, vol. 23, no. 1, pp. 1–17, 2022, doi: 10.1186/s12859-022-04886-6.

[4] L. Yang et al., “A new automatic sugarcane seed cutting machine based on internet of things technology and RGB color sensor,” PLoS One, vol. 19, no. 3 March, pp. 1–24, 2024, doi: 10.1371/journal.pone.0301294.

[5] N. Fitriana, “Optimalisasi Pemahaman Fisika Pada Hukum Newton Dengan Inquiry - Heuristik Vee Berbantuan Alat Peraga,” JURNAL PENDIDIKAN SAINS (JPS), vol. 8, no. 1, 2020, doi: 10.26714/jps.8.1.2020.73-80.

[6] H. T. Kim, S. T. Kim, J. Kim, K. C. Jin, and H. S. Kim, “Generating selected color using RGB, auxiliary lights, and simplex search,” Int J Opto-mechatronics, vol. 10, no. 3–4, pp. 130–140, 2016, doi: 10.1080/15599612.2016.1223235.

[7] U. Singh, Z. Saifi, P. S. Tirumalai, and S. D. Krishnananda, “Unveiling bacterial communication with a MATLAB GUI implementing the diffu-sion-based quorum sensing model,” Sci Rep, vol. 14, no. 1, pp. 1–9, 2024, doi: 10.1038/s41598-024-63661-0.

[8] D. I. Surya Saputra, M. A. Triwibowo, M. F. Noeris, and M. Alasad, “Pengolahan Citra Negatif Klise Menjadi Citra True Color Dengan Matlab,” Sisfotenika, vol. 7, no. 1, pp. 85–95, 2017, doi: 10.30700/jst.v7i1.123.

[9] A. Ferrari, L. Filippin, M. Buiatti, and E. Parise, “WTools: A MATLAB-based toolbox for time-frequency analysis of infant data,” PLoS One, vol. 20, no. 5, May, pp. 1–15, 2025, doi: 10.1371/journal.pone.0323179.

[10] Y. Ma, I. Eizenberg-Magar, and Y. Antebi, “EasyFlow: An open-source, user-friendly cytometry analyzer with graphic user interface (GUI),” PLoS One, vol. 19, no. 11 November, pp. 1–7, 2024, doi: 10.1371/journal.pone.0308873.

[11] J. Bulusu et al., “The Gridded Geomagnetic Field of India with MATLAB GUI,” Data Sci J, vol. 24, pp. 1–15, 2025, doi: 10.5334/dsj-2025-010.

[12] I. R. Fachrezzy SA, “IMPLEMENTASI ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) UNTUK DETEKSI OTOMATIS JENIS BUAH BERDASARKAN CITRA WARNA DAN BENTUK MENGGUNAKAN MATLAB,” 2025, Universitas Islam Sultan Agung Sema-rang.

[13] I. Roza, Y. T. Nugraha, R. Rida, M. Irwanto, and M. A. Othman, “Modeling of Glugur Substation grounding systems using MATLAB graph-ical user interface,” International Journal of Electrical and Computer Engineering, vol. 15, no. 1, pp. 15–23, 2025, doi: 10.11591/ijece.v15i1.pp15-23.

[14] E. Momox and L. M. Alonso-Valerdi, “A MATLAB GUI for Engineering Education in the Undergraduate Laboratory,” International Journal of Information and Education Technology, vol. 13, no. 5, pp. 861–866, 2023, doi: 10.18178/ijiet 2023.13.5.1880.

[15] T. Pusdita and V. Lusiana, “Deteksi Motif Sarung Tenun Goyor Botolan Kabupaten Pemalang Menggunakan Metode Knn,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 1, pp. 473–481, 2025, [Online]. Available: https://doi.org/10.29100/jipi.v10i1.5778

[16] M. Nasir, P. S. Nugroho, S. R. U. Khasanah, and H. Suhendra, “Graphic User Interface (GUI) Matlab for Making Media Teaching Media Straight Motion Physics,” Jurnal Paedagogy, vol. 9, no. 3, p. 393, 2022, doi: 10.33394/jp.v9i3.5357.

[17] H. R. Cahyaputra and R. Rahmadewi, “Klasifikasi Tingkat Kematangan Buah Paprika Menggunakan Metode K-Nearest Neighbor Berdasarkan Warna Rgb Melalui Aplikasi Matlab,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 242–249, 2024, doi: 10.29100/jipi.v9i1.4440.

[18] P. Praus and P. Praks, “Hierarchical clustering of RGB surface water images based on MIA-LSI approach,” Water SA, vol. 36, no. 1, pp. 143–150, 2010, doi: 10.4314/wsa.v36i1.50922.

[19] Y. Zhou, V. Sirivesmas, E. Joneurairatana, and S. Simatrang, “A New Automatic Watercolour Painting Algorithm Based on Dual Stream Image Segmentation Model with Colour Space Estimation,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no. 6, pp. 397–410, 2023, doi: 10.17762/ijritcc.v11i6.7733.

[20] Y. Apridiansyah, E. D. Putra, D. Diana, and A. C. Pratama, “Segmentasi Warna Kulit Menggunakan Ruang Warna YCBCR Untuk Deteksi Wajah Manusia,” Jurnal Media Infotama, vol. 19, no. 1, pp. 205–210, 2023, doi: 10.37676/jmi.v19i1.3808.

[21] K. Fidiya, M. J. Vikri, and A. Y. Kartini, “Deteksi Kualitas Buah Sawo dengan Pendekatan Ekstraksi Fitur GLCM dan Algoritma Support Vector Machine,” JURIKOM (Jurnal Riset Komputer), vol. 12, no. 2, pp. 74–83, 2025, doi: 10.30865/jurikom.v12i2.8519.


Tips Main yang Aman dan Seru

judi bolavipbet88vipbet88bolago88clubjudi