IDENTIFIKASI JENIS OPERASI DATA MANIPULATION LANGUAGE BERBASIS BILSTM PADA KALIMAT BERBAHASA INDONESIA
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
R. Zhong, S. Su, and H. Chen, ‘SketchRefine: Hierarchical Text-to-SQL via Sketch and Refine’, Transactions of the Association for Com-putational Linguistics, vol. 11, pp. 210–225, 2023.
T. Yu, R. Zhang, A. Konstantinov, and others, ‘Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task’, in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018, pp. 3911–3921.
P. Wang, V. Kishore, B. Keller, and others, ‘RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers’, in Pro-ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 7564–7576.
D. Guo, P. Pasupat, and T. Jaim, ‘Towards Generating Complex Text-to-SQL using Sub-query Encoding’, in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019, pp. 725–734.
A. Mohammadjafari, A. Maida, and R. Gottumukkala, ‘From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems’, arXiv preprint arXiv:2410.01066, 2024.
T. Mahmud and others, ‘A rule based approach for nlp based query processing’, in 2nd IEEE International Conference on Electrical In-formation and Communication Technologies (EICT), 2015, pp. 78–82.
I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, ‘Natural language interfaces to databases–An introduction’, Journal of Natural Lan-guage Engineering, vol. 1, no. 1, pp. 29–81, 1995.
D. Patel, ‘SyntaxSQLNet: Syntax-tree-based Decoding for Text-to-SQL’, Medium blog, 2019.
D. Lee, J. Yoon, J. Song, and others, ‘One-Shot Learning for Text-to-SQL Generation’, arXiv preprint arXiv:1905.11499, 2019.
A. Elgohary and others, ‘Interactive Text-to-SQL via Editable Step-by-Step Explanations’, in EMNLP 2023, 2023, p.
R. Zhong and others, ‘Addressing Limitations of Encoder–Decoder Based Approach to Text-to-SQL’, in COLING 2022, 2022, p.
X. Xu, C. Liu, and D. Song, ‘SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning’, arXiv preprint arXiv:1711.04436, 2017.
M. authors Unknown, ‘Improving Text-to-SQL with a Hybrid Decoding Method’, Entropy, vol. 25, no. 3, p. 513, 2023.
H. Sankhla, ‘A Comprehensive Survey of LLM-Based Text-to-SQL’, dev.to, 2024.
N. Rajkumar, R. Li, and D. Bahdanau, ‘Evaluating the Text-to-SQL Capabilities of Large Language Models’, arXiv preprint arXiv:2204.00498, 2022.
A. Mohammadjafari, A. Maida, and R. Gottumukkala, ‘From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems’, arXiv preprint arXiv:2410.01066, 2024.
A. Gao and others, ‘Text-to-SQL Empowered by Large Language Models: A Benchmark on Prompt Engineering’, PVLDB, vol. 17, p. 1132, 2023.
T. Wu and others, ‘Intent recognition model based on sequential information and sentence features’, Neurocomputing, 2023.
A. S. Varghese and V. Mahalakshmi, ‘Bidirectional LSTM joint model for intent classification and named entity recognition in natural language understanding’, Human-centric Computing and Information Sciences, vol. 10, no. 1, pp. 1–17, 2020.
P. Gupta, ‘Building a Text Classification model using BiLSTM’. 2020. [Online]. Available: https://medium.com/analytics-vidhya/building-a-text-classification-model-using-bilstm-c0548ace26f2
C. O. Bilah and T. B. Adji, ‘Deteksi Intent pada Teks Bahasa Indonesia Menggunakan Bidirectional LSTM’, Undergraduate Thesis, Uni-versitas Gadjah Mada, 2023. [Online]. Available: https://etd.repository.ugm.ac.id/penelitian/detail/228084
A. Kurniawan, A. Abdiansah, and A. S. Utami, ‘NL2SQL untuk Chatbot dengan Semantic Parsing menggunakan Metode Berbasis Aturan’, Universitas Sriwijaya, Technical Report, 2022.
D. W. Chandra, ‘Pembuatan aplikasi penerjemah Indonesian Query Language ke dalam bentuk SQL dengan metode non-deterministic finite automata’, PhD Thesis, Universitas Kristen Petra, 2006.
I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, ‘Natural language interfaces to databases–An introduction’, Journal of Natural Lan-guage Engineering, vol. 1, no. 1, pp. 29–81, 1995.
D. Patel, ‘SyntaxSQLNet: Syntax-tree-based Decoding for Text-to-SQL’, Medium blog, 2019.
D. Lee, J. Yoon, J. Song, and others, ‘One-Shot Learning for Text-to-SQL Generation’, arXiv preprint arXiv:1905.11499, 2019.
A. Elgohary and others, ‘Interactive Text-to-SQL via Editable Step-by-Step Explanations’, in Proceedings of EMNLP 2023, 2023.
V. Zhong, C. Xiong, and R. Socher, ‘Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning’, in arXiv preprint arXiv:1709.00103, 2017.
R. Zhong and others, ‘Addressing Limitations of Encoder–Decoder Based Approach to Text-to-SQL’, in Proceedings of COLING 2022, 2022.
X. Xu, C. Liu, and D. Song, ‘SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning’, arXiv preprint arXiv:1711.04436, 2017.