IMPLEMENTATION OF THE BACKPROPAGATION METHOD FOR RECOMMENDING ANNUAL AWARD RECIPIENTS AMONG OUTSTANDING STUDENTS

Salsabil Wahyu Romadhona
Mohammad Zoqi Sarwani
Anang Aris Widodo


DOI: https://doi.org/10.29100/jipi.v10i2.7978

Abstract


This research aims to develop a recommendation system for annual awards for outstanding students using the Backpropagation method in an Artificial Neural Network (ANN). Student assessment is based on four main variables: academic grades, attitude scores, extracurricular activity scores, and attendance records. The data were obtained from an elementary school in Pasuruan City through a survey method, then processed using preprocessing and normalization techniques before being trained using the Backpropagation algorithm. The model was developed using a Sequential architecture with two hidden layers, and its performance was evaluated using a confusion matrix and a classifi-cation report. The testing results showed that the model was able to classify outstanding students with a highest accuracy rate of 97%, demonstrating strong performance in terms of precision, recall, and F1 score. These results indicate that the Backpropagation method is effec-tive in enhancing the objectivity and efficiency of the outstanding stu-dent selection process based on historical data.

Keywords


Backpropagation; Artificial Neural Network (ANN); Classification; Outstanding Student Recommendation; Education

Full Text:

PDF

Article Metrics :

References


Nurkholis, “PENDIDIKAN DALAM UPAYA MEMAJUKAN TEKNOLOGI Oleh: Nurkholis Doktor Ilmu Pendidikan, Alumnus Universitas Negeri Jakarta Dosen Luar Biasa Jurusan Tarbiyah STAIN Purwokerto,” vol. 1, no. 1, pp. 24–44, 2013.

Y. Prayoga, A. Mahmudi, and H. Zulfia Zahro’, “Penerapan Metode K Means Pada Sistem Informasi Akademik Untuk Pengelompokkan Siswa Berprestasi Di Upt Sma Negeri 3 Kota Pasuruan Berbasis Web,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 822–828, 2021, doi: 10.36040/jati.v5i2.3740.

A. Amalia, “Pemilihan Siswa Berprestasi Dengan Metode Saw (Simple Additive Weighting),” J. Sci. Soc. Res., vol. 5, no. 2, p. 211, 2022, doi: 10.54314/jssr.v5i2.907.

I. A. Setyani and Y. R. Sipayung, “Sistem Pendukung Keputusan Menentukan Siswa Berprestasi dengan Metode SAW (Simple Addtive Weighting),” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 632, 2023, doi: 10.30865/json.v4i4.6179.

M. T. . Sutiono S.Kom., M.Kom., “Metode TOPSIS: Pengertian, Kelebihan dan Contoh,” DosenIT.com. [Online]. Available: https://dosenit.com/kuliah-it/metode-topsis

D. Andini, “Jaringan Syaraf Tiruan Untuk Klasifikasi Penyakit Demam Menggunakan Algoritma Backpropagation,” Bull. Artif. Intell., vol. 2, no. 1, pp. 86–99, 2023, doi: 10.62866/buai.v2i1.80.

S. N. Rifai, “Prediksi Spasial Produktivitas Klorofil-a Lautan Menggunakan Metode Backpropagation,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 458–467, 2024, doi: 10.23960/jitet.v12i1.3804.

E. E. Prayogo, I. Indriati, and C. Dewi, “Klasifikasi Bidang Keunggulan Mahasiswa menggunakan Metode Backpropagation dan Seleksi Fitur Information Gain (Studi Kasus: Departemen Teknik Informatika …,” J. Pengemb. Teknol. …, vol. 7, no. 1, pp. 169–178, 2023.

M. Y. A.-H. Syah, M. R. Sanjaya, E. Lestari, and B. W. Putra, “Sistem Pendukung Keputusan Dengan Menerapkan Metode TOPSIS Untuk Menentukan Siswa Terbaik,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 2, pp. 149–154, 2023, doi: 10.47233/jteksis.v5i2.794.

V. B. Saragih, P. Sistem, P. Keputusan, P. Pemilihan, and S. Berprestasi, “Siswa Berprestasi Dengan Metode Saw,” vol. 1, no. 2, pp. 1–10, 2018.

D. A. Sani and M. Z. Sarwani, “Koreksi Jawaban Esai Berdasarkan Persamaan Makna Menggunakan Fasttext dan Algoritma Backpropagation,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 2, pp. 92–111, 2022, doi: 10.23887/janapati.v11i2.49192.

Euis Saraswati, Yuyun Umaidah, and Apriade Voutama, “Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19,” Gener. J., vol. 5, no. 2, pp. 109–118, 2021, doi: 10.29407/gj.v5i2.16125.

F. Alamri, S. Ningsih, I. Djakaria, D. Wungguli, and I. K. Hasan, “Perbandingan Metode Lvq Dan Backpropagation Untuk Klasifikasi Status Gizi Anak Di Kecamatan Sangkup,” J. Gaussian, vol. 12, no. 3, pp. 314–321, 2023, doi: 10.14710/j.gauss.12.3.314-321.

T. Hardoyo and E. H. P. Eko, “Klasifikasi Usaha Mikro Kecil Menengah Menggunakan Jaringan Syaraf Tiruan Backpropagation,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 111–123, 2022, doi: 10.24002/konstelasi.v2i1.5625.

ima, “Klasifikasi Data: Pemahaman, Metode, dan Aplikasinya dalam Berbagai Bidang,” TESIS.ID. [Online]. Available: https://tesis.id/blog/klasifikasi-data-pemahaman-metode-dan-aplikasinya-dalam-berbagai-bidang/

A. M. Indrawan and A. Pandu Kusuma, “Analisis Algoritma Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dalam Mendeteksi Keahlian Mahasiswa Program Studi Teknik Informatika Universitas Islam Balitar,” J. Mnemon., vol. 5, no. 1, pp. 9–13, 2021, doi: 10.36040/mnemonic.v5i1.4272.

N.Wahyudi, M. Simanjuntak, and Sihombing, “Jaringan Syaraf Tiruan Memprediksi Pemasangan Saluran Air Bersih Pengguna Baru Menggunakan Metode Backpropagation pada PDAM Tirta Sari Binjai,” Algoritm. J. Ilmu Komput. dan Inform., vol. 5, no. 2, pp. 90–100, 2021.

Sebastian, “An Introduction to Neural Network Loss Functions,” Programmathically. [Online]. Available: https://programmathically.com/an-introduction-to-neural-network-loss-functions/

Rina, “Memahami Confusion Matrix: Accuracy, Precision, Recall, Specificity, dan F1-Score untuk Evaluasi Model Klasifikasi,” Medium. [Online]. Available: https://esairina.medium.com/memahami-confusion-matrix-accuracy-precision-recall-specificity-dan-f1-score-610d4f0db7cf

D. I. Purnama, R. L. Islami, L. Sari, and P. R. Sihombing, “Analisis Klasifikasi Data Tracer Study Dengan Support Vector Machine Dan Neural Network,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 2, pp. 46–52, 2021, doi: 10.47970/siskom-kb.v4i2.191.