PENERAPAN METODE U-NET DALAM SEGMENTASI CITRA ULTRASONOGRAFI UNTUK VISUALISASI TUMOR PAYUDARA
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
Agung and Adisusilo, A.K. (2020) ‘Pemanfaatan 3D U-Net untuk Segmentasi 3 Dimensi Gelembung Penyebab Kanker Paru-paru (Nodule) pada Lapisan Citra CT Scan’, Journal of Intelligent System and Computation, 2(2), pp. 74–85. Available at: https://doi.org/10.52985/insyst.v2i2.159
Al-Dhabyani, W. et al. (2020) ‘Dataset of breast ultrasound images’, Data in Brief, 28, p104863. Available at: https://doi.org/10.1016/j.dib.2019.104863
Alfarisi, H.M. (2020) ‘Mengenal Perbedaan Artificial Intelligence, Machine Learning, Neural Network & Deep Learning (Part II)’, 21 March 2020, pp. 1–1. Available at: http://sistem-komputer s1.stekom.ac.id/informasi/baca/Mengenal-Perbedaan-Artificial-Intelligence-Machine-Learning-Neural-Network-Deep-Learning-Seri-3/a115e35a62282ce8927b9bf6b0d4261fda07051c%0Ahttps://medium.com/@hai qalmuhamadalfarisi/mengenal-perbedaan-a
Ayana, G., Dese, K. and Choe, S. (2021) ‘Transfer Learning in Breast Cancer Diagnoses via’, Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging, pp. 1–15
Badawy, S.M. et al. (2021) ‘Automatic semantic segmentation of breast tumors in ultrasound images based on combining fuzzy logic and deep learning — A feasibility study’. Available at: https://doi.org/10.1371/journal.pone.0251899.
Byra, M. et al. (2020) ‘Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network’, Biomedical Signal Processing and Control, 61. Available at: https://doi.org/10.1016/j.bspc.2020.102027.
Darenoh, N.V. et al. (2014) ‘Segmentasi Semantik Citra Dengan Convolutional Neural Network Menggunakan Arsitektur U-Net’, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), x, No. x(30), p. 2. Available at: https://doi.org/10.25126/jtiik.
Diah Irawati, P.A. and Hermawati, F.A. (2022) ‘Klasifikasi Kanker Payudara Berbasis Citra Ultrasound Menggunakan Metode Transfer Learning Canny’
Fadlur Rochman and Junaedi, H. (2020) ‘Implementasi Transfer learning Untuk Identifikasi Ordo Tumbuhan Melalui Daun’, jurnal Health Sains, 1(6), pp. 672– 679. Available at: https://doi.org/10.46799/jsa.v1i6.103.
Gongping Chen, Lei Li, Yu Dai, Jianxun Zhang, and Moi Hoon Yap (2022) AAU-net: An Adaptive Attention U-net for Breast Lesions Segmentation in Ultrasound Images, ieee transactions on medical imaging.
Narinder Singh Punn*, Sonali Agarwal (2022) RCA-IUnet: A residual cross-spatial attention guided inception U-Net model for tumor segmentation in breast ultrasound imaging
Donya Khaledyan*, Thomas J. Marini, Timothy M. Baran, Avice O’Connell, Kevin Parker (2023) Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet
Jiadong Chen, Xiaoyan Shen, Yu Zhao, Wei Qian, He Ma, Liang Sang (2024) Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction
Golla Madhu, Avinash Meher Bonasi, Sandeep Kautish, Abdulaziz S. Almazyad, Ali Wagdy Mohamed, Frank Werner, Mehdi Hosseinzadeh and Mohammad Shokouhifar (2024) UCapsNet: A Two-Stage Deep Learning Model Using U-Net and Capsule Network for Breast Cancer Segmentation and Classifi cation in Ultrasound Imaging
Payel Pramanik, Ayush Roy, Erik Cuevas, Marco Perez-Cisneros, Ram Sarkar (2024) DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018; 68(6):394–424
Pramanik P, Mukhopadhyay S, Kaplun D, Sarkar R. A deep feature selection method for tumor classification in breast ultrasound images. In: International conference on mathematics and its applications in new computer systems. Springer; 2021. p. 241–252.
Muhammad M, Zeebaree D, Brifcani AMA, Saeed J, Zebari DA. Region of interest segmentation based on clustering techniques for breast cancer ultrasound images: A review. Journal of Applied Science and Technology Trends. 2020; 1(3):78–91. https://doi.org/10.38094/jastt20201328
Huang Q, Luo Y, Zhang Q. Breast ultrasound image segmentation: a survey. International journal of computer assisted radiology and surgery. 2017; 12:493–507. https://doi.org/10.1007/s11548-016-1513-1
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:180403999. 2018;