OPTIMASI HYPERPARAMETER MODEL LSTM DAN VARIANNYA UNTUK PERAMALAN PEMBELIAN BAHAN BAKU KARET ALAM
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
N. P. Setyadi, “Penerapan Data Mining Untuk Prediksi Hasil Produksi Karet Menggunakan Algorit-ma Decision Tree C4 . 5,” Jurnal Teknologipintar.org, vol. 2, no. 7, 2022, Accessed: Dec. 15, 2023. [Online]. Available: http://teknologipintar.org/index.php/teknologipintar/article/view/203/201
A. Mustakim, Suharno, and Burhanuddin, “Hubungan Penerapan Best Management Practice Pen-golahan Karet Remah Pada Kinerja Pemasaran PT. Remco Rubber Indonesia,” Forum Agribisnis, vol. 13, no. 2, 2023, doi: 10.29244/fagb.13.2.240-247.
L. F. Syarifa, D. S. Agustina, A. Alamsyah, I. S. Nugraha, and H. Asywadi, “OUTLOOK KOMODITAS KARET ALAM INDONESIA 2023,” Jurnal Penelitian Karet, 2023, doi: 10.22302/ppk.jpk.v41i1.841.
H. Herudin, E. Yurisinthae, and A. Suyatno, “Konversi Usahatani Karet Menjadi Usahatani Kelapa Sawit Kecamatan Belitang Hilir Kabubaten Sekadau,” Jurnal Sosial Ekonomi Pertanian, vol. 18, no. 1, 2021, doi: 10.20956/jsep.v18i1.18459.
E. Amrina and A. Y. Dewi, “Optimizing Inventory Control System of Crumb Rubber Raw Material: a Case Study,” IOP Conf Ser Mater Sci Eng, vol. 1041, no. 1, p. 012045, Jan. 2021, doi: 10.1088/1757-899x/1041/1/012045.
P. A. Qori, D. S. Oktafani, and I. Kharisudin, “Analisis Peramalan dengan Long Short Term Memory pada Data Kasus Covid-19 di Provinsi Jawa Tengah,” PRISMA, Prosiding Seminar Na-sional Matematika, vol. 5, 2022.
K. Kwanda, D. E. Herwindiati, and M. D. Lauro, “Perbandingan LSTM dan Bidirectional LSTM pa-da Sistem Prediksi Harga Saham Berbasis Website,” Ranah Research : Journal of Multidisciplinary Research and Development, vol. 7, no. 1, pp. 26–35, Nov. 2024.
K. Qiu, J. Li, and D. Chen, “Optimized long short-term memory (LSTM) network for performance prediction in unconventional reservoirs,” Energy Reports, vol. 8, pp. 15436–15445, Nov. 2022, doi: 10.1016/j.egyr.2022.11.130.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, 2021, doi: 10.3390/informatics8040079.
S. Hanifi, A. Cammarono, and H. Zare-Behtash, “Advanced hyperparameter optimization of deep learning models for wind power prediction,” Renew Energy, vol. 221, 2024, doi: 10.1016/j.renene.2023.119700.
B. Bischl et al., “Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges,” 2023. doi: 10.1002/widm.1484.
J. P. Lai, Y. L. Lin, H. C. Lin, C. Y. Shih, Y. P. Wang, and P. F. Pai, “Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis,” Micromachines (Basel), vol. 14, no. 2, 2023, doi: 10.3390/mi14020265.
A. M. Vincent and P. Jidesh, “An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms,” Sci Rep, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-32027-3.
T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” 2022. doi: 10.5194/gmd-15-5481-2022.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more in-formative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, 2021, doi: 10.7717/PEERJ-CS.623.