INTEGRASI WORD EMBEDDINGS DAN INVERSE BOOK FREQUENCY DALAM PEMBOBOTAN TERM UNTUK PENINGKATAN PENCARIAN DOKUMEN
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
S. Naseri, J. Dalton, A. Yates, dan J. Allan, "CEQE: Contextualized Embeddings for Query Expansion," arXiv preprint arXiv:2103.05256, 2021.
A. Silva dan M. Mendoza, "A data-driven strategy to combine word embeddings in information retrieval," arXiv preprint arXiv:2105.12788, 2021.
J. Wang, "Optimizing Query Expansion with Deep Learning," Journal of Information Science and Technology, vol. 22, no. 4, pp. 310-322, 2022.
K. Lee et al., "Enhancing Information Retrieval with BERT-based Query Expansion," IEEE Transactions on Knowledge and Data Engi-neering, vol. 35, no. 2, pp. 890-902, 2023.
Y. Kim dan H. Park, "A Novel Term Weighting Approach for Query Expansion Using Neural Embeddings," ACM Transactions on Infor-mation Systems, vol. 41, no. 3, pp. 1-24, 2024.
T. Ren dan M. Sohrab, "An Improved TF-IDF Model for Document Ranking," International Journal of Computer Science and Information Security, vol. 18, no. 1, pp. 56-67, 2021.
A. Fauzi et al., "Enhancing Document Retrieval with IBF and Semantic Weighting," IEEE Access, vol. 10, pp. 11045-11058, 2022.
J. Francis dan P. Roberts, "Query Expansion Techniques in Modern Search Systems," Information Retrieval Journal, vol. 25, no. 3, pp. 205-219, 2023.
C. D. Manning, P. Raghavan, dan H. Schütze, Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press, 2008.
T. Mikolov, K. Chen, G. Corrado, dan J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
B. Elekes, T. Tikk, dan J. Kovács, "Using word embedding similarities for query expansion," dalam Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017), 2017, pp. 31-40.
J. Fauzi, A. G. Abdullah, dan T. Herawan, "Cosine similarity algorithm for vector space model in information retrieval," Journal of Com-putational Science and Engineering, vol. 20, no. 4, pp. 145-155, 2022.
R. Smith dan L. Brown, "Advancements in Query Expansion Techniques," IEEE Transactions on Information Retrieval, vol. 36, no. 1, pp. 50-65, 2023.
A. Jones et al., "A Comparative Study on Term Weighting Approaches," ACM Journal on Information Science, vol. 45, no. 2, pp. 78-95, 2024.
L. Green, "Deep Learning for Query Expansion," Journal of Machine Learning Research, vol. 29, no. 7, pp. 1012-1030, 2022.
M. White, "Contextualized Query Expansion for Multilingual Retrieval," International Journal of Artificial Intelligence Research, vol. 18, no. 5, pp. 231-245, 2023.
P. Evans dan D. Carter, "Integrating Neural Networks for Query Expansion," IEEE Transactions on Artificial Intelligence, vol. 12, no. 4, pp. 315-328, 2024.
C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press, 2008.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
B. Elekes, T. Tikk, and J. Kovács, "Using word embedding similarities for query expansion," in Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017), 2017, pp. 31-40.
J. Fauzi, A. G. Abdullah, and T. Herawan, "Cosine similarity algorithm for vector space model in information retrieval," Journal of Com-putational Science and Engineering, vol. 20, no. 4, pp. 145-155, 2022.