CRICKET PRODUCTION FORECASTING USING THE MOVING AVERAGE METHOD

Pangki Suseno
Dwi Junianto
Farid Sukmana
Bian Dwi Pamungkas


DOI: https://doi.org/10.29100/jipi.v9i4.7066

Abstract


Cricket production in Indonesia has promising business potential, particularly in rural areas. However, production variability is often a major challenge for farmers to maintain economic stability. Therefore, production forecasting methods are needed for better management. This study aims to predict cricket production using Moving Average (MA) and Weighted Moving Average (WMA) methods and compare their accuracy. The research was conducted in Rejotangan District, Tulungagung, using 12 weeks of cricket production data from May to August 2024. The accuracy of the method was measured using Mean Absolute Deviation (MAD), Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). From this research, the best model that can be used to predict the amount of cricket production is the Weighted Moving Average (WMA) model with n = 4 with the lowest prediction accuracy value (MAD, MSE and MAPE) of 16.05, 514.513 and 10.985% respectively. From the forecasting results, the total production of crickets in the existing farm for one period ahead with the WMA model n = 4 is 150.9 kg.

Keywords


Cricket Production; Forecast; Moving Aver-age; Weighted Moving Average, Accuracy.

Full Text:

PDF

Article Metrics :

References


I. Zulkarnaen, R. I. Rosihan, and R. Muhendra, “PERBAIKAN PENGELOLAAN TERNAK JANGKRIK GUNA MENINGKATKAN HASIL PRODUKSI DAN PENJUALAN,” 2021.

F. Maulana, F. Fajri, B. P. Febrina, A. M. Ali, N. Jannah, and S. Norazizah, “Pengaruh Umur Panen Berbeda terhadap Kandungan Nutrisi dan Analisa Kelayakan Usaha Jangkrik Alam Budidaya di Kalimantan Selatan,” JPI, vol. 25, no. 2, p. 194, Jun. 2023, doi: 10.25077/jpi.25.2.194-205.2023.

A. Halloran, N. Roos, and Y. Hanboonsong, “Cricket farming as a livelihood strategy in Thailand,” Geographical Journal, vol. 183, no. 1, pp. 112–124, Mar. 2017, doi: 10.1111/geoj.12184.

H. J. O. Magara et al., “Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review,” Front. Nutr., vol. 7, Jan. 2021, doi: 10.3389/fnut.2020.537915.

M. Arvan, B. Fahimnia, M. Reisi, and E. Siemsen, “Integrating human judgement into quantitative forecasting methods: A review,” Omega, vol. 86, pp. 237–252, Jul. 2019, doi: 10.1016/j.omega.2018.07.012.

Saefudin, D. Susandi, and F. Nafis, “SISTEM PERAMALAN PENJUALAN PAVING BLOCK MENGGUNAKAN METODE SINGLE MOVING AVERAGE,” JSiI, vol. 8, no. 2, pp. 75–81, Sep. 2021, doi: 10.30656/jsii.v8i2.3727.

M. Latif and R. Herdiansyah, “Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Ex-ponential Smoothing,” josh, vol. 3, no. 2, pp. 137–142, Jan. 2022, doi: 10.47065/josh.v3i2.1232.

Anna Nita Kusumawati, Muhammad Ghofur, Mega Anggraeni Putri, Zaki Abdullah Alfatah, and Mu’adzah, “Peramalan Permintaan Menggunakan Time Series Forecasting Model Untuk Merancang Resources Yang Dibutuhkan IKM Percetakan,” jenius, vol. 2, no. 2, pp. 105–115, Nov. 2021, doi: 10.37373/jenius.v2i2.159.

F. Ustadatin, A. Muqtadir, and A. Arifia, “Implementasi Metode Weighted Moving Average (WMA) Pada Prediksi Harga Bahan Pokok,” Komputika, vol. 12, no. 2, pp. 83–90, Sep. 2023, doi: 10.34010/komputika.v12i2.10304.

F. Ahmad, “PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT.X,” JISI, vol. 7, no. 1, p. 31, May 2020, doi: 10.24853/jisi.7.1.31-39.

M. Siregar, S. Pandiangan, and D. Anwar, “Planning Production Capacity Using Time Series Forecasting Method and Linier Program-ming,” Engineering Management Research, 2018, Accessed: Jan. 16, 2025. [Online]. Available: https://www.semanticscholar.org/paper/Planning-Production-Capacity-Using-Time-Series-and-Siregar-Pandiangan/f3cb404a51f3e1438e7ae4702f8fc6caeb8b6783

S. Nurhayati and A. Syafiq, “Sistem Prediksi Jumlah Produksi Baju Menggunakan Weighted Moving Average,” JAMIKA, vol. 12, no. 1, pp. 14–24, Mar. 2022, doi: 10.34010/jamika.v12i1.6680.

F. Irawan, S. Sumijan, and Y. Yuhandri, “Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average,” jidt, pp. 251–256, Sep. 2021, doi: 10.37034/jidt.v3i4.162.

I. G. Anjani, A. B. Saputri, A. N. P. Armeira, and D. Januarita, “Analisis Konsumsi Dan Produksi Minyak Kelapa Sawit Di Indonesia Dengan Menerapkan Metode Moving Average,” Jur. Ris. Kom., vol. 9, no. 4, p. 1014, Aug. 2022, doi: 10.30865/jurikom.v9i4.4506.

N. Azahra, S. C. Alifia, N. P. Andyka, S. Wijayanto, and M. Y. Fathoni, “Peramalan Jumlah Produksi Tebu Menggunakan Metode Time Series Model Moving Averages,” Jur. Ris. Kom., vol. 9, no. 4, p. 840, Aug. 2022, doi: 10.30865/jurikom.v9i4.4388.

A. Nyangarika, A. Mikhaylov, and U. Henning Richter, “Oil Price Factors: Forecasting on the Base of Modified Auto-regressive Inte-grated Moving Average Model,” IJEEP, vol. 9, no. 1, pp. 149–159, 2019.

S. Hansun, “A new approach of moving average method in time series analysis,” in 2013 Conference on New Media Studies (CoNMe-dia), Tangerang, Indonesia: IEEE, Nov. 2013, pp. 1–4. doi: 10.1109/CoNMedia.2013.6708545.

S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” International Journal of Forecast-ing, vol. 32, no. 3, pp. 669–679, Jul. 2016, doi: 10.1016/j.ijforecast.2015.12.003.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geoscientific Model Devel-opment, vol. 15, no. 14, pp. 5481–5487, Jul. 2022, doi: 10.5194/gmd-15-5481-2022.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.