SYSTEM DESIGN FOR EARLY DETECTION OF DIABETES MELLITUS USING IOT-BASED NON-INVASIVE SENSORS
Abstract
This research aims to design a diabetes mellitus early detection tool using IoT-based non-invasive sensors. This tool uses blood pressure sensors and color sensors to detect glucose levels in urine. The data obtained from these sensors is sent to the Arduino Uno microcontroller, displayed on the LCD screen, and saved to the Firebase platform for further monitoring and analysis. The test results show that this tool is able to measure and display blood pressure data and urine glucose levels accurately and in real time so that it can be used as a practical and efficient diabetes mellitus diagnostic tool. This research makes a very important contribution to the development of IoT-based health technology, especially in facilitating early detection of diabetes non-invasively. This research aims to design a diabetes mellitus early detection tool using IoT-based non-invasive sensors.
Keywords
Full Text:
PDFArticle Metrics :
References
D. Diana Dewi, N. Qisthi, S. S. S. Lestari, and Z. H. S. Putri, “Perbandingan Metode Neural Network Dan Support Vector Machine Dalam Klasifikasi Diagnosa Penyakit Diabetes,” Cerdika J. Ilm. Indones., vol. 3, no. 09, pp. 828–839, 2023, doi: 10.59141/cerdika.v3i09.662.
U. Hasanah, “Insulin Sebagai Pengatur Kadar Gula Darah, hal,” J. Kel. Sehat Sejah., vol. 11, no. 22, pp. 42–49, 2013.
H. S. W. Hovi, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” Informatics Digit. Expert, vol. 4, no. 1, pp. 40–45, 2022, doi: 10.36423/index.v4i1.895.
R. T. Yunardi, R. Apsari, and M. Yasin, “Comparison of Machine Learning Algorithm For Urine Glucose Level Classification Using Side-Polished Fiber Sensor,” J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 2, pp. 33–39, 2020, doi: 10.35882/jeeemi.v2i2.1.
K. Kemalasari, M. A. Ifadah, and B. N. Iman, “Alat Pendeteksi Kadar Glukosa pada Urine dengan Metode Naive Bayes,” J. Rekayasa Elektr., vol. 18, no. 4, pp. 208–215, 2022, doi: 10.17529/jre.v18i4.27238.
S. Hintari and A. I. Fibriana, “Hipertensi pada Penduduk Usia Produktif (15-59 Tahun) di Wilayah Kerja Puskesmas Pageruyung Kabupaten Kendal Sri,” Higeia J. Public Heal. Res. Dev., vol. 1, no. 2, pp. 208–218, 2023, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/higeia/article/view/63472
L. A. Subagyo and B. Suprianto, “Sistem Monitoring Arus Tidak Seimbang 3 Fasa Berbasis Arduino Uno,” J. Tek. Elektro, vol. 6, no. 3, pp. 213–221, 2017.
H. Suryantoro, “Prototype Sistem Monitoring Level Air Berbasis Labview dan Arduino Sebagai Sarana Pendukung Praktikum Instrumentasi Sistem Kendali,” Indones. J. Lab., vol. 1, no. 3, p. 20, 2019, doi: 10.22146/ijl.v1i3.48718.
T. Suryana, “Implementasi Komunikasi Web Server NODEMCU ESP8266 dan Web Server Apache MYSQL Untuk Otomatisasi Dan Kontrol Peralatan Elektronik Jarak Jauh Via Internet Abstrak : Pendahuluan Pembahasan,” J. Komputa Unikom 2021, vol. 37, no. 1, p. 2, 2021.
R. M. Alti, F. W. Kusuma, and R. E. Sovia, “Desain Sistem Charger untuk Baterai berkapasitas 650 mAh Menggunakan Sel Surya,” TELKA - Telekomun. Elektron. Komputasi dan Kontrol, vol. 6, no. 2, pp. 138–146, 2020, doi: 10.15575/telka.v6n2.138-146.