Evaluasi Optimizer Adam dan RMSProp pada Arsitektur VGG-19 Klasifikasi Ekspresi Wajah Manusia

Fauzi Ramadhan
Julan Hernadi


DOI: https://doi.org/10.29100/jipi.v10i2.6197

Abstract


Ekspresi wajah merupakan salah satu bentuk komunikasi non-verbal utama yang memungkinkan pengenalan dan pemahaman emosi manusia. Dalam konteks perkembangan Artificial Intelegence (AI), klasifikasi emosi dari ekspresi wajah menjadi bidang penelitian yang penting. Penelitian ini bertujuan untuk menyalakan kinerja dua optimizer populer yaitu Adam dan RMSProp pada model VGG-19. Evaluasi dilakukan dengan pengukuran akurasi dan loss validasi dari kedua optimizer menggunakan dataset FER-2013, yang terdiri dari gambar-gambar ekspresi wajah dengan berbagai emosi. Model VGG-19 yang digunakan adalah versi modifikasi dengan penambahan lapisan fullconnected dan dropout untuk mengurangi overfitting. Hasil penelitian menunjukkan bahwa optimizer Adam mampu mencapai akurasi rasio tertinggi sebesar 91.26% dengan batch size 256 dan epoch 25, serta menghasilkan loss validasi sebesar 1.0241, sedangkan optimizer RMSProp menghasilkan rasio rata-rata 84.60% dengan batch size 32 dan epoch 50, serta menghasilkan loss validasi 1.0910 . Analisis lebih lanjut menunjukkan bahwa optimizer Adam tidak hanya lebih efisien dalam mencapai akurasi yang lebih tinggi, tetapi juga lebih stabil dalam konvergensi dibandingkan dengan RMSProp, meskipun memerlukan ukuran batch yang lebih besar. Hal ini menunjukkan bahwa Adam lebih efektif dalam mengatasi variasi dalam gradien yang sering terjadi pada dataset besar dan kompleks. Data ini menunjukkan bahwa meskipun optimizer Adam membutuhkan ukuran batch yang lebih besar, secara konsisten memberikan kinerja lebih baik dalam klasifikasi emosi dibandingkan dengan RMSProp. Berdasarkan hasil optimasi tersebut Adam direkomendasikan untuk digunakan dengan arsitektur VGG-19 dalam tugas klasfikasi ekspresi wajah.

Keywords


Ekspresi Wajah; VGG-19; Optimizer Adam; Optimizer RMSProp

Full Text:

PDF

Article Metrics :

References


D. Puspitasari and B. Putra Danaya, “Pentingnya Peranan Komunikasi Dalam Organisasi: Lisan, Non Verbal, Dan Tertulis (Literature Review Manajemen),” J. Ekon. Manaj. Sist. Inf., vol. 3, no. 3, pp. 257–268, 2022, doi: 10.31933/jemsi.v3i3.817.

Y. Achmad, R. C. Wihandika, and C. Dewi, “Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10595–10604, 2019.

I. Arifin, R. F. Haidi, and M. Dzalhaqi, “Penerapan Computer Vision Menggunakan Metode Deep Learning pada Perspektif Generasi Ulul Albab,” J. Teknol. Terpadu, vol. 7, no. 2, pp. 98–107, 2021, doi: 10.54914/jtt.v7i2.436.

S. Widodo, D. Setiawan, T. Ridwan, and R. Ambari, “Perancangan Deteksi Emosi Manusia berdasarkan Ekspresi Wajah Menggunakan Algoritma VGG16,” Syntax J. Inform., vol. 11, no. 01, pp. 01–12, 2022, doi: 10.35706/syji.v11i01.6594.

Weny Indah Kusumawati and Adisaputra Zidha Noorizki, “Perbandingan Performa Algoritma VGG16 Dan VGG19 Melalui Metode CNN Untuk Klasifikasi Varietas Beras,” J. Comput. Electron. Telecommun., vol. 4, no. 2, 2023, doi: 10.52435/complete.v4i2.387.

S. Cheng and G. Zhou, “Facial Expression Recognition Method Based on Improved VGG Convolutional Neural Network,” Int. J. Pattern Recognit. Artif. Intell., vol. 34, no. 7, pp. 1–16, 2020, doi: 10.1142/S0218001420560030.

D. Learning, “Deep Learning - Goodfellow,” Nature, vol. 26, no. 7553, p. 436, 2016.

Q. Tang, F. Shpilevskiy, and M. Lécuyer, “DP-AdamBC: Your DP-Adam Is Actually DP-SGD (Unless You Apply Bias Correction),” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 14, pp. 15276–15283, 2024, doi: 10.1609/aaai.v38i14.29451.

S. Vasudevan, “Mutual information based learning rate decay for stochastic gradient descent training of deep neural networks,” Entropy, vol. 22, no. 5, 2020, doi: 10.3390/E22050560.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm for deep neural network optimization,” Neural Comput. Appl., vol. 35, no. 23, pp. 17095–17112, 2023, doi: 10.1007/s00521-023-08568-z.

S. Asy Syifa and I. Amelia Dewi, “MIND (Multimedia Artificial Intelligent Networking Database Arsitektur Resnet-152 dengan Perbandingan Optimizer Adam dan RMSProp untuk Mendeteksi Penyakit Paru-Paru,” J. MIND J. | ISSN, vol. 7, no. 2, pp. 139–150, 2022, [Online]. Available: https://doi.org/10.26760/mindjournal.v7i2.139-150

L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017, [Online]. Available: http://arxiv.org/abs/1712.04621

A. Wibowo, P. W. Wiryawan, and N. I. Nuqoyati, “Optimization of neural network for cancer microRNA biomarkers classification,” J. Phys. Conf. Ser., vol. 1217, no. 1, 2019, doi: 10.1088/1742-6596/1217/1/012124.

J. Terven, D. M. Cordova-Esparza, A. Ramirez-Pedraza, and E. A. Chavez-Urbiola, “Loss Functions and Metrics in Deep Learning,” pp. 1–53, 2023, [Online]. Available: http://arxiv.org/abs/2307.02694

I. H. Kartowisastro and J. Latupapua, “A Comparison of Adaptive Moment Estimation (Adam) and RMSProp Optimisation Techniques for Wildlife Animal Classification Using Convolutional Neural Networks,” Rev. d’Intelligence Artif., vol. 37, no. 4, pp. 1023–1030, 2023, doi: 10.18280/ria.370424.

D. Soydaner, “A Comparison of Optimization Algorithms for Deep Learning,” Int. J. Pattern Recognit. Artif. Intell., vol. 34, no. 13, pp. 1–26, 2020, doi: 10.1142/S0218001420520138.

L. Ciampiconi, A. Elwood, M. Leonardi, A. Mohamed, and A. Rozza, “A survey and taxonomy of loss functions in machine learning,” vol. 1, no. 1, pp. 1–29, 2023, [Online]. Available: http://arxiv.org/abs/2301.05579

A. Mjahad, M. Saban, H. Azarmdel, and A. Rosado-Muñoz, “Efficient Extraction of Deep Image Features Using a Convolutional Neural Network (CNN) for Detecting Ventricular Fibrillation and Tachycardia,” J. Imaging, vol. 9, no. 9, 2023, doi: 10.3390/jimaging9090190.

B. Putra, G. Pamungkas, B. Nugroho, and F. Anggraeny, “Deteksi dan Menghitung Manusia Menggunakan YOLO-CNN,” J. Inform. dan Sist. Inf., vol. 02, no. 1, pp. 67–76, 2021.

R. Yusuf and A. A. Huda, “Deteksi Emosi Wajah Menggunakan Metode Backpropagation,” J. Autom. Comput. Inf. Syst., vol. 3, no. 2, pp. 103–114, 2023, doi: 10.47134/jacis.v3i2.60.

I. Gusmanda, J. Raharjo, and E. Suhartono, “Deteksi Penyakit Pneumonia Berbasis Citra XRay Menggunakan Cnn Arsitektur Vgg-19,” e-Proceeding Eng., vol. 10, no. 6, pp. 5178–5181, 2023.

Y. Wang et al., “Adapting Stepsizes by Momentumized Gradients Improves Optimization and Generalization,” no. M, pp. 1–40, 2021, [Online]. Available: http://arxiv.org/abs/2106.11514

D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of Optimizers for Deep Learning,” no. 1, 2019, [Online]. Available: http://arxiv.org/abs/1910.05446

A. Chaudhary, K. S. Chouhan, J. Gajrani, and B. Sharma, Deep learning with PyTorch. 2020. doi: 10.4018/978-1-7998-3095-5.ch003.