Analysis of IoT Use in the Smart Home Context Using the TAM Model: Education and Income as Moderating Variables
Abstract
This study aims to develop effective policies and strategies to promote the adoption of IoT technologies, particularly smart home usage in Indonesia, in light of the rapid increase in internet usage and to address the digital divide due to varying education and income levels. Utilizing the Technology Acceptance Model (TAM) and a quantitative methodology, the survey was conducted with 427 smart home users via a digital form distributed on social media. Data was analyzed using TAM variables and additional variables like privacy, compatibility, perceived ease of use, perceived usefulness, attitude towards using, behavioral intention to use, and actual system use, with demographics (income and education) as moderating variables. The results show that privacy, perceived ease of use, and perceived usefulness significantly influence attitudes towards using smart homes, which in turn positively affects users' intention to use them, while compatibility does not. Education and income levels weaken the relationship between external factors and intention to use smart homes. This research highlights the impact of demographic factors on IoT adoption and provides insights for technology providers and policymakers to enhance smart home device adoption in Indonesia.
Keywords
Full Text:
PDFArticle Metrics :
References
F. R. Ferdhany and L. Aldianto, “Adoption and Acceptance of Smart Home Technology Products for Millennials in Indonesia,” Asian J. Res. Bus. Manag., vol. 2, no. 2, pp. 154–164, 2020, [Online]. Available: http://myjms.moe.gov.my/index.php/ajrbm
Dinda Khansa Berlian, “Smart Home Makin Diminati, Tapi Penuh TantanganNo Title,” MERDEKA.COM. [Online]. Available: https://www.merdeka.com/teknologi/smart-home-makin-diminati-tapi-penuh-tantangan.html
A. Strzelecki, B. Kolny, and M. Kucia, “Smart Homes as Catalysts for Sustainable Consumption: A Digital Economy Perspective,” Sustainability, vol. 16, no. 11, p. 4676, 2024, doi: 10.3390/su16114676.
A. Al-Momani, M. N. Al-Refai, S. Abuowaida, M. Arabiat, N. Alshdaifat, and M. N. A. Rahman, “The effect of technological context on smart home adoption in Jordan,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 2, pp. 1186–1195, 2024, doi: 10.11591/ijeecs.v33.i2.pp1186-1195.
K. Trisnio, “Penggunaan TAM (Technology Acceptance Model) Untuk Keperluan Penelitian,” Binus. [Online]. Available: https://sis.binus.ac.id/2016/12/13/penggunaan-tam-technology-acceptance-model-untuk-keperluan-penelitian/https://sis.binus.ac.id/2016/12/13/penggunaan-tam-technology-acceptance-model-untuk-keperluan-penelitian/
I. Purwandani and N. O. Syamsiah, “Analisa Penerimaan dan Penggunaan Teknologi Google Classroom Dengan Technology Acceptance Model (TAM),” JARTIKA J. Ris. Teknol. dan Inov. Pendidik., vol. 3, no. 2, pp. 247–255, 2020, doi: 10.36765/jartika.v3i2.257.
J. Shin, Y. Park, and D. Lee, “Who will be smart home users? An analysis of adoption and diffusion of smart homes,” Technol. Forecast. Soc. Change, vol. 134, no. January, pp. 246–253, 2018, doi: 10.1016/j.techfore.2018.06.029.
M. Hubert, M. Blut, C. Brock, R. W. Zhang, V. Koch, and R. Riedl, “The influence of acceptance and adoption drivers on smart home usage,” Eur. J. Mark., vol. 53, no. 6, pp. 1073–1098, 2019, doi: 10.1108/EJM-12-2016-0794.
N. T. Wei, A. S. Baharudin, L. A. Hussein, and M. F. Hilmi, “Factors affecting user’s intention to adopt smart home in Malaysia,” Int. J. Interact. Mob. Technol., vol. 13, no. 12, pp. 39–54, 2019, doi: 10.3991/ijim.v13i12.11083.
P. Baudier, C. Ammi, and M. Deboeuf-Rouchon, “Smart home: Highly-educated students’ acceptance,” Technol. Forecast. Soc. Change, vol. 153, no. January 2018, p. 119355, 2020, doi: 10.1016/j.techfore.2018.06.043.
A. Shuhaiber and I. Mashal, “Understanding users’ acceptance of smart homes,” Technol. Soc., vol. 58, no. March 2018, p. 101110, 2019, doi: 10.1016/j.techsoc.2019.01.003.
R. Iten, J. Wagner, and A. Zeier Röschmann, “On the Adoption of Smart Home Technology in Switzerland: Results from a Survey Study Focusing on Prevention and Active Healthy Aging Aspects,” Smart Cities, vol. 7, no. 1, pp. 370–413, 2024, doi: 10.3390/smartcities7010015.
Y. Z. Yuan and N. K. Kamaruddin, “The Intention to Use Smart Home Internet of Things (IoT) among Generation Y: An Application of the Technology Acceptance Model (TAM),” Yap Kamaruddin, vol. 4, no. 1, pp. 637–648, 2023, [Online]. Available: http://publisher.uthm.edu.my/periodicals/index.php/rmtb
R. Yasirandi, A. Lander, H. R. Sakinah, and I. M. Insan, “IoT Products Adoption for Smart Living in Indonesia: Technology Challenges and Prospects,” 2020 8th Int. Conf. Inf. Commun. Technol. ICoICT 2020, pp. 1–6, 2020, doi: 10.1109/ICoICT49345.2020.9166200.
D. Marikyan, S. Papagiannidis, O. F. Rana, and R. Ranjan, “Working in a smart home environment: examining the impact on productivity, well-being and future use intention,” Internet Res., vol. 34, no. 2, pp. 447–473, 2024, doi: 10.1108/INTR-12-2021-0931.
P. D. Sugiyono, Metode Penelitian Kuantitatif Kualitatif dan R&D, 19th ed. ALFABETA, CV., 2013.
Harryanto, M. Muchran, and A. S. Ahmar, “Application of TAM model to the use of information technology,” Int. J. Eng. Technol., vol. 7, no. 2.9 Special Issue 9, pp. 37–40, 2018.
D. Pal, S. Funilkul, V. Vanijja, and B. Papasratorn, “Analyzing the Elderly Users’ Adoption of Smart-Home Services,” IEEE Access, vol. 6, pp. 51238–51252, 2018, doi: 10.1109/ACCESS.2018.2869599.
W. Widhiarso, “Berkenalan dengan Variabel Moderator,” Draft, pp. 1–5, 2011.
L. Liana, “Penggunaan MRA dengan SPSS untuk menguji pengaruh variabel moderating terhadap hubungan antara variabel independen dan variabel dependen,” Dinamik, vol. 14, no. 2, pp. 90–97, 2009.
SCOTT W. VANDERSTOEP DEIRDRE D. JOHNSTON, Research Methods for Everyday Life, 1st ed. Unite State: Jossey-Bass, 2009.
P. D. Samsu, S.Ag., M.Pd.I., METODE PENELITIAN: (Teori dan Aplikasi Penelitian Kualitatif, Kuantitatif, Mixed Methods, serta Research & Development), 1st ed. Jambi: Pusaka Jambi, 2017.
M. R. RIDHO, “Panduan Lengkap: Apa Itu Skala Likert? Manfaat dan Contohnya,” 20 juni. Accessed: Jun. 26, 2024. [Online]. Available: https://bee.telkomuniversity.ac.id/panduan-lengkap-apa-itu-skala-likert-manfaat-dan-contohnya/
P. D. Sugiyono, METODE PENELITIAN KUANTITATIF, KUALITATIF DAN R&D, 22nd ed. Bandung: ALFABETA, CV., 2015.
AZUAR JULIANDI, “STRUCTURAL EQUATION MODEL PARTIAL LEAST SQUARE (SEM-PLS) DENGAN SMARTPLS,” Sumatera Utara, 2018. doi: DOI: 10.5281/zenodo.1243777.
P. D. Prof. H. Imam Ghozali,M.Kom, Partial Least Squares: Konsep, Teknik dan aplikasi menggunakan program SmartPLS 3.2.9 untuk penelitian empiris. Semarang: Badan Penerbit Universitas Diponegoro, 2021.
T.-Y. Chou, “AN INTEGRATED TECHNOLOGY ACCEPTANCE MODEL TO APPROACH THE BEHAVIORAL INTENTION OF SMART HOME APPLIANCE,” Int. J. Organ. Innov., vol. 13, no. 2, p. 96, 2020, [Online]. Available: http://www.ijoi-online.org/http://www.ijoi-online.org/
T. Laksana, N. Anggis Suwastika, and M. Al Makky, “Technology Acceptance Model (TAM) For Smart Lighting System in XYZ Company,” J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 11, no. 2, pp. 121–130, 2022.
A. Purnamasari, F. Pranastara, I. S. Rosa, D. Riana, and S. Hadianti, “Analysis of the Effect of DTPB on User Intention to Keep Using the Flip Application,” Sistemasi, vol. 11, no. 1, p. 108, 2022, doi: 10.32520/stmsi.v11i1.1633.
M. R. S. Lagatari and Sufa’atin, “Model Penerimaan Pengguna pada Situs E-kosan.com Menggunakan Technology Acceptance Model (TAM),” Maj. Ilm. UNIKOM, vol. 13, no. 2, pp. 165–178, 2015, [Online]. Available: http://search.unikom.ac.id/index.php/jurnal-unikom/article/viewFile/123/120
J. Heryanta, “Pengaruh Behavioral Intention Terhadap Actual Use Pengguna GO-JEK Indonesia dengan Pendekatan Technology Acceptance Model dan Innovation Diffusion Theory,” J. Ilm. Mhs. FEB Univ. Brawijaya, vol. 7, no. 2, pp. 1–11, 2019.