COMBINATION OF LOGISTIC REGRESSION AND NAÏVE BAYES IN SENTIMENT ANALYSIS OF ONLINE LENDING APPLICATION PLATFORMS BY UTILIZING THE LEXICONS FEATURE

Muhammad Faisal Zaenudin
Yuliant Sibaroni


DOI: https://doi.org/10.29100/jipi.v10i2.6163

Abstract


In the digital age, online lending apps have become an important tool in facilitating financial transactions and supporting MSMEs. However, the existence of negative opinions related to violations such as theft of customer data raises concerns in the community. This research aims to analyze sentiment towards online loan applications, especially Kredivo, using a combination of Logistic Regression and Naïve Bayes which is optimized through the Lexicons feature. Data is taken from Google Play Store reviews, then labeling, preprocessing, and feature extraction are executed through TF-IDF technique. The classification models built are Naive Bayes (NB) and Logistic Regression (LR), where the results of the two models are combined with the ensemble voting method using lexicons features. The evaluation results show that the combination approach of the three methods can significantly improve classification accuracy compared to the use of a single method. The combined model achieved an accuracy of 89.62%, higher than Logistic Regression (86.19%) and Naive Bayes (83.54%).

Keywords


Sentiment Analysis; Logistic Regression; Naïve Bayes; Lexicon; Online Loans; Kredivo

Full Text:

PDF

Article Metrics :

References


M. I. Ghozali, W. H. Sugiharto, and A. Fajar Iskandar, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” Media Online), vol. 3, no. 6, pp. 1340–1348, 2023, doi: 10.30865/klik.v3i6.936.

M. K. Elhadad, K. F. Li, and F. Gebali, “Detecting misleading information on COVID-19,” IEEE Access, vol. 8, pp. 165201–165215, 2020, doi: 10.1109/ACCESS.2020.3022867.

“DETEKSI KONTEN HOAX BERBAHASA INDONESIA PADA MEDIA SOSIAL MENGGUNAKAN METODE LEVENSHTEIN DISTANCE SKRIPSI.”

F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” Jurnal Sisfokom (Sistem Informasi dan Kom-puter), vol. 9, no. 2, pp. 247–253, Jul. 2020, doi: 10.32736/sisfokom.v9i2.903.

A. V. T. R. Rihan Maulana, “ANALISIS SENTIMEN ULASAN APLIKASI MYPERTAMINA PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NBC,” Jurnal Teknologi Terpadu, vol. 9, no. 1, pp. 42–48, Jul. 2023, doi: https://doi.org/10.54914/jtt.v9i1.609.

B. Ramdani, A. Dwi Saputra, M. Rafli Alta Zahir, I. Komputer, and U. Bhayangkara Jakarta Raya, “Analisis Sen-timen Terhadap Ulasan Aplikasi Pinjaman Online (PINJOL) di Google Play Store Menggunakan Naive Baiyes Classifer,” 2023.

S. A. Assaidi and F. Amin, “Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression.”

B. Setiawan, K. Ahmad Baihaqi, E. Nurlaelasari, and H. Hikmayanti Handayani, “Analisis Sentimen Ulasan Ap-likasi Identitas Kependudukan Digital Menggunakan Algoritma Logistic Regression dan K-Nearest Neighbor,” Technology and Science (BITS), vol. 6, no. 1, pp. 533–540, 2024, doi: 10.47065/bits.v6i1.5389.

S. S. Salim and J. Mayary, “ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP DOMPET EL-EKTRONIK DENGAN METODE LEXICON BASED DAN K – NEAREST NEIGHBOR,” Jurnal Ilmiah Informat-ika Komputer, vol. 25, no. 1, pp. 1–17, 2020, doi: 10.35760/ik.2020.v25i1.2411.

I. L. Kharisma, D. A. Septiani, A. Fergina, and K. Kamdan, “Penerapan Algoritma Decision Tree untuk Ulasan Ap-likasi Vidio di Google Play,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 9, no. 2, pp. 218–226, Sep. 2023, doi:

25077/teknosi.v9i2.2023.218-226.

Indra, Agus Umar Hamdani, Suci Setiawati, Zena Dwi Mentari, and Mauridhy Hery Purnomo, “Comparison of K-NN, SVM, and Random Forest Algorithm for Detecting Hoax on Indonesian Election 2024,” Jurnal Nasional Pen-didikan Teknik Informatika (JANAPATI), vol. 13, no. 1, Mar. 2024, doi: 10.23887/janapati.v13i1.76079.

N. Komang et al., “Seleksi Fitur Bobot Kata dengan Metode TFIDF untuk Ringkasan Bahasa Indonesia,” MERPATI, vol. 6, no. 2, 2018.

M. Farid Rifai, H. Jatnika, B. Valentino, and S. Tinggi Teknik PLN, “Penerapan Algoritma Naïve Bayes Pada Sis-tem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS),” vol. 12, no. 2, 2019.

A. Sabrani, I. W. Gede Putu Wirarama Wedashwara, and F. Bimantoro, “METODE MULTINOMIAL NAÏVE BAYES UNTUK KLASIFIKASI ARTIKEL ONLINE TENTANG GEMPA DI INDONESIA (Multinomial Naïve Bayes Method for Classification of Online Article About Earthquake in Indonesia).” [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/

A. Rahman and A. Doewes, “Online News Classification Using Multinomial Naive Bayes.” [Online]. Available: www.kompas.com

X. Wan, “The influence of polynomial order in logistic regression on decision boundary,” in IOP Conference Se-ries: Earth and Environmental Science, Institute of Physics Publishing, Jun. 2019. doi: 10.1088/1755-1315/267/4/042077.

Ash Shiddicky and Surya Agustian, “Analisis Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 pada Media Sosial Twitter menggunakan Metode Logistic Regression,” Jurnal CoSciTech (Computer Science and In-formation Technology), vol. 3, no. 2, pp. 99–106, Aug. 2022, doi: 10.37859/coscitech.v3i2.3836.

D. Abimanyu, E. Budianita, E. Pandu Cynthia, F. Yanto, P. Studi Teknik Informatika, and F. Sains Dan Teknologi, “Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 3, 2022, [Online]. Available: https://techno.kompas.com

J. Garay, R. Yap, and M. J. Sabellano, “An analysis on the insights of the anti-vaccine movement from social me-dia posts using k-means clustering algorithm and VADER sentiment analyzer,” in IOP Conference Series: Materi-als Science and Engineering, Institute of Physics Publishing, Mar. 2019. doi: 10.1088/1757-899X/482/1/012043.

M. Farras, ) Viny, C. Mawardi, and T. Sutrisno, “Aplikasi Analisis Sentimen Komentar Pengguna Genshin Impact Di Play Store.”