KLASIFIKASI PENYAKIT KULIT BERBASIS SUPPORT VECTOR MACHINE DENGAN EKSTRAKSI FITUR ABCD RULE

Al Danny Rian Wibisono
Eka Prakarsa Mandyartha
Muhammad Muharrom Al Haromainy


DOI: https://doi.org/10.29100/jipi.v10i1.6039

Abstract


Penyakit kulit merupakan masalah kesehatan yang signifikan, gejala dari penyakit ini berupa gatal, nyeri, mati rasa, dan kemerahan. Penyakit ini dapat disebabkan oleh beberapa faktor seperti virus, jamur, dan mikroorganisme. Menurut data Dinas Kesehatan Surabaya tahun 2019, prevalensi penyakit kulit dan jaringan subkutan mencapai 4,53%, menjadikannya penyakit terbanyak keenam yang dialami masyarakat. Oleh sebab itu, pada penelitian ini diusulkan sebuah penelitian mengenai klasifikasi penyakit kulit menggunakan Support Vector Machine melalui analisis fitur ABCD Rule. Pada penelitian ini akan dilakukan labeling pada 5 kelas penyakit kulit yang akan digunakan sebagai data latih dan data uji melalui 7 tahapan utama yakni Pengumpulan Dataset Citra Penyakit Kulit, Pre-processing Inpaint Talea, Pre-processing Gaussian Blur dan Normalisasi Mask, Segmentasi Thresholding Otsu Bitwise, Restorasi Kontur, Ekstraksi Fitur ABCD Rule, dan klasifikasi menggunakan Support Vector Machine (SVM). Sebanyak 4 skenario pengujian dilakukan untuk menemukan model terbaik, dimana skenario pengujian melibatkan pengaturan pembagian data yang berbeda, kernel berbeda, dan parameter yang berbeda pada model Support Vector Machine (SVM). Melalui skenario tersebut didapatkan hasil terbaik, yaitu Akurasi sebesar 86,42%, Spesifisitas sebesar 96,60%, dan Sensitivitas sebesar 86,42%. Hal ini menunjukkan bahwa metode yang diusulkan memiliki kinerja yang cukup baik dalam mengklasifikasikan jenis penyakit kulit. Penelitian ini tidak hanya berpotensi dalam meningkatkan diagnosis penyakit kulit secara efisien, tetapi juga mendorong pengembangan sistem deteksi berbasis teknologi untuk mendukung layanan kesehatan kulit yang lebih terjangkau dan andal.

Keywords


Penyakit Kulit, Support Vector Machine, ABCD Rule, Pemrosesan Citra, Klasifikasi

Full Text:

PDF

Article Metrics :

References


A. Irjayanti, A. Wambrauw, I. Wahyuni, and A. A. Maranden, “Personal Hygiene dengan Kejadian Penyakit Kulit,” J. Ilm. Kesehat. Sandi Husada, vol. 12, no. 1, pp. 169–175, 2023.

W. D. K. Surabaya, “STATISTIK 10 PENYAKIT TERBANYAK.” Accessed: Mar. 07, 2024. [Online]. Available: https://dinkes.surabaya.go.id/portalv2/profil/dkk-dalam-angka/statistik-10-penyakit-terbanyak/

C. Dianzani et al., “Current therapies for actinic keratosis,” Int. J. Dermatol., vol. 59, no. 6, pp. 677–684, 2020, doi: 10.1111/ijd.14767.

C. Miranda, “Skrining dan Diagnosis Melanoma Kulit,” CDK Kournal, vol. 47, no. 4, pp. 301–305, 2020.

K. Melbin and Y. J. V. Raj, “Integration of modified ABCD features and support vector machine for skin lesion types classification,” Multimed. Tools Appl., vol. 80, no. 6, pp. 8909–8929, 2021, doi: 10.1007/s11042-020-10056-8.

D.- Andriansyah and Eka Wulansari Fridayanthie, “Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance,” J. Informatics Telecommun. Eng., vol. 6, no. 2, pp. 484–493, 2023, doi: 10.31289/jite.v6i2.8373.

Joshua Agung Nurcahyo and Theopilus Bayu Sasongko, “Hyperparameter Tuning Algoritma Supervised Learning untuk Klasifikasi Keluarga Penerima Bantuan Pangan Beras,” Indones. J. Comput. Sci., vol. 12, no. 3, pp. 1351–1365, 2023, doi: 10.33022/ijcs.v12i3.3254.

A. Murugan, S. A. H. Nair, and K. P. S. Kumar, “Detection of Skin Cancer Using SVM, Random Forest and kNN Classifiers,” J. Med. Syst., vol. 43, no. 8, 2019, doi: 10.1007/s10916-019-1400-8.

S. Chatterjee, D. Dey, S. Munshi, and S. Gorai, “Dermatological expert system implementing the ABCD rule of dermoscopy for skin disease identification,” Expert Syst. Appl., vol. 167, p. 114204, 2021, doi: 10.1016/j.eswa.2020.114204.

D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, and N. N. Hien, “Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule,” J. Digit. Imaging, vol. 33, no. 3, pp. 574–585, 2020, doi: 10.1007/s10278-019-00316-x.

M. Tahat, B. Abuata, and M. Nuser, “Computer Aided Diagnosis of Melanoma Based on the ABCD Rule,” Int. J. Comput. Digit. Syst., vol. 12, no. 1, pp. 643–652, 2022, doi: 10.12785/ijcds/120152.

R. Shalehuddin Albawani, F. Tri Anggraeny, and M. Muharrom Al Haromainy, “Implementasi Seblock Pada Klasifikasi Citra Penyakit Mata Manusia Dengan Arsitektur Mobilenetv3-Small,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1123–1128, 2024, doi: 10.36040/jati.v8i1.8916.

Digital Bunker, “Understanding Gaussian Blurs.” [Online]. Available: https://digitalbunker.dev/understanding-gaussian-blurs/

S. Kim and J. You, “Efficient LUT Design Methodologies of Transformation between RGB and HSV for HSV Based Image Enhancements,” J. Electr. Eng. Technol., no. 0123456789, 2024, doi: 10.1007/s42835-024-01859-y.

W. M. Baihaqi, Chyntia Raras Ajeng Widiawati, and Tegar Insani, “K-Means Clustering Based on Otsu Thresholding For Nucleus of White Blood Cells Segmentation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 907–914, 2020, doi: 10.29207/resti.v4i5.2309.

C. Guillemot and O. Le Meur, “Image Inpainting : Overview and recent advances,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 127–144, 2014, doi: 10.1109/MSP.2013.2273004.

F. K. Fikriah, M. Burhanis Sulthan, N. Mujahidah, and M. Khoirur Roziqin, “Naïve Bayes untuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Cooccurrence Matrix (GLCM),” J. Komtika (Komputasi dan Inform., vol. 6, no. 2, pp. 133–141, 2022, doi: 10.31603/komtika.v6i2.7925.

B. Montaruli, “Skin Lesions Classification using Computer Vision and Convolutional Neural Networks Image Processing and Artificial Vision Master Degree in Computer Science Engineering Polytechnic University of Bari,” vol. 10000, no. 2018, pp. 1–33, 2019.

E. P. Mandyartha, F. A. Akbar, H. E. Wahanani, and F. Muttaqin, “Leukocyte counting using combination of first order statistical parameters and otsu’s thresholding in microscopic blood image,” Proceeding - 6th Inf. Technol. Int. Semin. ITIS 2020, pp. 156–161, 2020, doi: 10.1109/ITIS50118.2020.9321039.

V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem formulations and solvers in linear SVM: a review,” Artif. Intell. Rev., vol. 52, no. 2, pp. 803–855, 2019, doi: 10.1007/s10462-018-9614-6.

D. Alita, Y. Fernando, and H. Sulistiani, “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter,” J. Tekno Kompak, vol. 14, no. 2, p. 86, 2020, doi: 10.33365/jtk.v14i2.792.

I. M. D. P. Asana and N. P. D. T. Yanti, “Sistem Klasifikasi Pengajuan Kredit Dengan Metode Support Vector Machine (SVM) I Made Dwi Putra Asana,” J. Sist. Cerdas, vol. 6, no. 2, pp. 123–133, 2023.

J. Kostková, J. Flusser, M. Lébl, and M. Pedone, “Handling Gaussian blur without deconvolution,” Pattern Recognit., vol. 103, 2020, doi: 10.1016/j.patcog.2020.107264.

P. Li, T. Shi, Y. Zhao, and A. Lu, “Design of Threshold Segmentation Method for Quantum Image,” Int. J. Theor. Phys., vol. 59, no. 2, pp. 514–538, 2020, doi: 10.1007/s10773-019-04346-7.