Prediction of Stunting Nutritional Status in Toddlers Using Naïve Bayes Classifier Algorithm

Rudi Hariyanto
Mohammad Zoqi Sarwani
Yunita Nur Aprilia


DOI: https://doi.org/10.29100/jipi.v10i2.5930

Abstract


Stunting is a chronic nutritional problem in toddlers that affects children's physical growth and cognitive development. Early identification and prediction of toddlers' nutritional status are crucial for timely intervention. This study aims to predict the nutritional status of stunting in toddlers using the Naïve Bayes Classifier algorithm. The data used in this study is derived from community health surveys with variables such as age, weight, height, and parental nutritional status. The research process began with data collection and pre-processing to ensure high-quality data. Subsequently, the data was trained using the Naïve Bayes Classifier algorithm, known for its simplicity and efficiency in data classification. Prediction results were then evaluated using metrics of accuracy, precision, recall, and F1-score to measure the model's performance. The study results indicate that the Naïve Bayes Classifier algorithm has high accuracy in predicting stunting status in toddlers, with an accuracy rate of 85%. Precision and recall also showed satisfactory results, at 82% and 87%, respectively. This model can be used as a tool for health workers to identify toddlers at risk of stunting, enabling earlier preventive measures. In conclusion, the use of the Naïve Bayes Classifier algorithm is proven effective in predicting the nutritional status of stunting in toddlers. The implementation of this model is expected to support child health programs and accelerate the reduction of stunting prevalence in the community.

Keywords


Naïve Bayes Classifier; Nutrional Status; Pre-dictions; Stunting

Full Text:

PDF

Article Metrics :

References


A. Rahayu et al., “STUDY GUIDE-STUNTING DAN UPAYA PENCEGAHANNYA,” 2018.

M. R. Nugroho, R. N. Sasongko, and M. Kristiawan, “Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia,” Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, vol. 5, no. 2, pp. 2269–2276, Mar. 2021, doi: 10.31004/OBSESI.V5I2.1169.

“Tumbuh Kembang Anak | PDF.” Accessed: Jun. 11, 2024. [Online]. Available: https://id.scribd.com/document/659881609/Tumbuh-Kembang-Anak-1

J. P. Masyarakat et al., “Pemenuhan Pangan Lokal Sebagai Kebutuhan Gizi Bayi Dan Balita Umur 6 -24 Bulan Di Kabupaten Banyumas,” Jurnal Pengabdian Masyarakat - PIMAS, vol. 1, no. 1, pp. 29–37, Feb. 2022, doi: 10.35960/PIMAS.V1I1.729.

- Badan Penelitian dan Pengembangan Kesehatan, “Laporan Provinsi Jawa Timur Riskesdas 2018,” Kementerian Kesehatan RI, p. 140, 2019.

F. O. Aridiyah et al., “Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Balita di Wilayah Pedesaan dan Perkotaan (The Factors Affecting Stunting on Toddlers in Rural and Urban Areas),” Pustaka Kesehatan, vol. 3, no. 1, pp. 163–170, Jan. 2015, Accessed: Jun. 11, 2024. [Online]. Available: https://jurnal.unej.ac.id/index.php/JPK/article/view/2520

I. Colanus, R. Drajana, and A. Bode, “Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 5, no. 2, pp. 309–316, Apr. 2022, doi: 10.32672/JNKTI.V5I2.4205.

W. C. Wahyudin, F. M. Hana, and A. Prihandono, “PREDIKSI STUNTING PADA BALITA DI RUMAH SAKIT KOTA SEMARANG MENGGUNAKAN NAIVE BAYES,” JURNAL ILMU KOMPUTER DAN MATEMATIKA, vol. 4, no. 1, pp. 32–36, Feb. 2023, Accessed: Jun. 11, 2024. [Online]. Available: https://ejr.umku.ac.id/index.php/jikoma/article/view/1792

R. Wahyudi, M. Program Studi Ilmu Keperawatan Fakultas Keperawatan Universitas Syiah Kuala Banda Aceh, and S. Pengajar Bagian Keilmuan Keperawatan Anak Fakultas Keperawatan Universitas Syiah Kuala Banda Aceh, “PERTUMBUHAN DAN PERKEMBANGAN BALITA STUNTING THE GROWTH AND DEVELOPMENT OVERVIEW OF THE STUNTING TODDLER.”

T. D. J. P. SC Chu, “Identifying correctness data scheme for aggregating data in cluster heads of wireless sensor net-work based on naive Bayes classification [J],” EURASIP J. Wirel. Commun. Netw., vol. 20, no. 1, pp. 963–982, 2020.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sen-timen Berbasis Teks Pada Twitter,” 2021.

W. Cholid Wahyudin, “KLASIFIKASI STUNTING BALITA MENGGUNAKAN NAIVE BAYES DENGAN SELEKSI FITUR FORWARD SELECTION.”