Implementation of BiLSTM and IndoBERT for Sentiment Analysis of TikTok Reviews
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
P. A. Permatasari, L. Linawati, and L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Majalah Ilmiah Teknologi Elektro, vol. 20, no. 2, pp. 177–186, Dec. 2021, doi: 10.24843/mite.2021.v20i02.p01.
L. Stappen, A. Baird, E. Cambria, B. W. Schuller, and E. Cambria, “Sentiment Analysis and Topic Recognition in Video Transcriptions,” IEEE Intell Syst, vol. 36, no. 2, pp. 88–95, Apr. 2021, doi: 10.1109/MIS.2021.3062200.
O. Somantri and D. Apriliani, “Support Vector Machine Berbasis Feature Selection Untuk Sentiment Analysis Kepuasan Pelanggan Terhadap Pelayanan Warung dan Restoran Kuliner Kota Tegal,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, pp. 537–548, Oct. 2018, doi: 10.25126/jtiik.201855867.
J. C. Setiawan, K. M. Lhaksmana, and B. Bunyamin, “Sentiment Analysis of Indonesian TikTok Review Using LSTM and IndoBERTweet Algo-rithm,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 774–780, 2023, doi: 10.29100/jipi.v8i3.3911.
S. Tam, R. Ben Said, and Ö. Tanriöver, “A ConvBiLSTM Deep Learning Model-Based Approach for Twitter Sentiment Classification,” IEEE Access, vol. 9, pp. 41283–41293, 2021, doi: 10.1109/ACCESS.2021.3064830.
Y. Huang, Y. Jiang, T. Hasan, Q. Jiang, and C. Li, “Topic BiLSTM model for sentiment classification,” ACM International Conference Proceed-ing Series, vol. Part F1376, pp. 143–147, 2018, doi: 10.1145/3194206.3194240.
R. Mas, R. W. Panca, K. Atmaja, and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirec-tional Encoder Representations from Transformers),” JEISBI, vol. 2, no. 3, p. 2021, Jul. 2021, [Online]. Available: ejour-nal.unesa.ac.id/index.php/JEISBI/article/view/41567
S. Saadah, Kaenova Mahendra Auditama, Ananda Affan Fattahila, Fendi Irfan Amorokhman, Annisa Aditsania, and Aniq Atiqi Rohmawati, “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, 2022, doi: 10.29207/resti.v6i4.4215.
D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current trends and challenges,” Multimed Tools Appl, pp. 1–32, Jul. 2022, doi: 10.1007/s11042-022-13428-4.
Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What Is Machine Learning: a Primer for the Epidemiologist Qifang,” Am J Epidemiol, vol. 188, no. 12, pp. 2222–2239, Dec. 2019, doi: https://doi.org/10.1093/aje/kwz189.
A. A. V. A. Jayaweera, Y. N. Senanayake, and P. S. Haddela, “Dynamic Stopword Removal for Sinhala Language,” in 2019 National Infor-mation Technology Conference (NITC), Oct. 2019, pp. 1–6. doi: 10.1109/NITC48475.2019.9114476.
K. S. Nugroho, A. Y. Sukmadewa, H. Wuswilahaken Dw, F. A. Bachtiar, and N. Yudistira, “BERT Fine-Tuning for Sentiment Analysis on Indone-sian Mobile Apps Reviews,” ACM International Conference Proceeding Series, pp. 258–264, 2021, doi: 10.1145/3479645.3479679.
B. Juarto and Yulianto, “Indonesian News Classification Using IndoBert,” International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 2, pp. 454–460, 2023.
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, no. Mlm, pp. 4171–4186, 2019.
F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indone-sian NLP,” COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference, pp. 757–770, 2020, doi: 10.18653/v1/2020.coling-main.66.
S. Ahmadi, “A Tokenization System for the Kurdish Language,” Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects, pp. 114–127, 2020, [Online]. Available: https://aclanthology.org/2020.vardial-1.11
D. Khyani, S. B. S, N. N. M, and D. B. M, “An Interpretation of Lemmatization and Stemming in Natural Language Processing,” Journal of Uni-versity of Shanghai for Science and Technology, vol. 22, no. 10, pp. 350–357, Oct. 2021, [Online]. Available: https://www.researchgate.net/publication/348306833
V. Nasteski, “An overview of the supervised machine learning methods,” Horizons.B, vol. 4, no. December 2017, pp. 51–62, 2017, doi: 10.20544/horizons.b.04.1.17.p05.
E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data Validation for Machine Learning,” Proceedings of Machine Learning and Systems 1 (MLSys 2019), pp. 334–347, 2019, [Online]. Available: https://proceedings.mlsys.org/paper/2019/file/5878a7ab84fb43402106c575658472fa-Paper.pdf
Dr. G. S. N. Murthy, S. R. Allu, B. Andhavarapu, M. Bagadi, and M. Belusonti, “Text based Sentiment Analysis using LSTM,” International Journal of Engineering Research and, vol. V9, no. 5, pp. 299–303, May 2020, doi: 10.17577/ijertv9is050290.
A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: a review,” Artif Intell Rev, vol. 53, no. 6, pp. 4335–4385, 2020, doi: 10.1007/s10462-019-09794-5.
J. Xie, B. Chen, X. Gu, F. Liang, and X. Xu, “Self-Attention-Based BiLSTM Model for Short Text Fine-Grained Sentiment Classification,” IEEE Access, vol. 7, pp. 180558–180570, 2019, doi: 10.1109/ACCESS.2019.2957510.
E. Beauxis-aussalet and L. Hardman, “Visualization of Confusion Matrix for Non-Expert Users,” in IEEE Information Visualization (InfoVis 2014), 2014.
J. M. Gorriz, F. Segovia, J. Ramirez, A. Ortiz, and J. Suckling, “Is K-fold cross validation the best model selection method for Machine Learning?,” no. Ml, 2024, [Online]. Available: http://arxiv.org/abs/2401.16407
Y. Liu, J. Lu, J. Yang, and F. Mao, “Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax,” Math-ematical Biosciences and Engineering, vol. 17, no. 6, pp. 7819–7837, 2020, doi: 10.3934/MBE.2020398.