IMPLEMENTATION OF THE LOCAL OUTLIER FACTOR MODEL FOR ANOMALY DETECTION IN KPU SUKABUMI REGENCY VOTER DATA

Nugraha Nugraha
Gina Purnama Insany
Roihan Kusuma Wardana - [ https://orcid.org/0009-0002-5876-6474 ]


DOI: https://doi.org/10.29100/jipi.v10i1.5795

Abstract


General elections are one of the most significant political activities in the life of a nation, necessitating accurate and reliable voter data. Inaccurate or unreliable voter data can lead to various issues, such as electoral fraud. One primary cause of inaccurate voter data is the presence of anomalies, which are data points that do not match the actual conditions. Anomalies in voter data can arise from several factors, including data entry errors, fraud, or system faults. To detect anomalies in voter data, various methods can be employed, with the Local Outlier Factor (LOF) method being one notable example. LOF is an unsupervised learning method in machine learning that identifies anomalies by measuring the distance between data points and their nearest neighbors. This study aims to implement the LOF method to detect anomalies in the voter data of the Sukabumi Regency Election Commission. The voter data used in this research was obtained from the Sukabumi Regency Election Commission for the year 2024.

Keywords


Anomaly Detection; Artificial Intelligence; Local Outlier Factor (LOF); Unsupervised Learning; Voter Data

Full Text:

PDF

Article Metrics :

References


A. Habibi, “Upaya Menyelamatkan Pemilihan Umum Di Tahun 2020,” vol. 4, pp. 167–172, 2020.

P. Finance, Funding of Political Parties and Election Campaigns.

P. Gleko, A. Suprojo, A. W. Lestari, U. Tribhuwana, and T. Malang, “Strategi komisi pemilihan umum dalam upaya meningkatkan partisipasi politik masyarakat pada pemilihan umum kepala daerah,” vol. 6, no. 1, pp. 38–47, 2017.

E. H. BUDIARTO, “Pendeteksian Anomali Menggunakan Local Outlier Factor Pada Data Untuk Meningkatkan Performa Prediksi Jumlah Obat,” pp. 2–3, 2020, [Online]. Available: https://etd.repository.ugm.ac.id/penelitian/detail/183405

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, “LOF : Identifying Density-Based Local Outliers,” pp. 93–104, 2000, doi: 10.1145/342009.335388.

D. Version, “Outlier Selection and One-Class Classi cation,” 2024.

M. H. Prof. Dr. H. Nandang Alamsah Deliarnoor, S.H., M. S. Dr. Hj. Ratnia Solihah, S.IP., M. Mustabsyirotul Ummah Mustofa, S.IP., and M. K. Tripanji Aryawardhana, S.H., “Riset Daftar Pemilih Provinsi Jawa Barat,” pp. 1–98, 2019.

E. H. Budiarto, A. Erna Permanasari, and S. Fauziati, “Unsupervised anomaly detection using K-Means, local outlier factor and one class SVM,” Proc. - 2019 5th Int. Conf. Sci. Technol. ICST 2019, 2019, doi: 10.1109/ICST47872.2019.9166366.

Z. Xu, D. Kakde, and A. Chaudhuri, “Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection,” Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, no. February, pp. 4201–4207, 2019, doi: 10.1109/BigData47090.2019.9006151.

A. Zulfikar, F. A. Rahmani, N. Azizah, D. J. Perbendaharaan, K. Keuangan, and P. Pinang, “Deteksi Anomali Menggunakan Isolation Forest Belanja Barang Persediaan Konsumsi Pada Satuan Kerja Kepolisian Republik Indonesia,” J. Manaj. Perbendaharaan, vol. 4, no. 1, pp. 1–15, 2023, doi: 10.33105/jmp.v4i1.435.

H. Mulyaningsih, H. Hertanto, and D. Wibisono, “VALIDITAS DATA PEMILIH POTENSIAL PEMILU (DP4) PADA PEMILU SERENTAK 2019 DI LAMPUNG (Studi Di Kabupaten Pesawaran),” Sosiol. J. Ilm. Kaji. Ilmu Sos. dan Budaya, vol. 22, no. 1, pp. 64–78, 2020, doi: 10.23960/sosiologi.v22i1.48.

D. A. Nugroho and R. M. Sukmariningsih, “Peranan Komisi Pemilihan Umum Dalam Mewujudkan Pemilu Yang Demokratis,” J. JURISTIC, vol. 1, no. 01, p. 22, 2020, doi: 10.35973/jrs.v1i01.1449.

N. K. Arniti, “Partisipasi Politik Masyarakat Dalam Pemilihan Umum Legislatif Di Kota Denpasar,” J. Ilm. Din. Sos., vol. 4, no. 2, p. 329, 2020, doi: 10.38043/jids.v4i2.2496.

S. Thudumu, P. Branch, J. Jin, and J. (Jack) Singh, “A comprehensive survey of anomaly detection techniques for high dimensional big data,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00320-x.

S. Situmorang, “Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan (LAZY LEARNING,” J. Mat. dan Ilmu Pengetah. Alam, vol. 1, no. 4, pp. 259–269, 2023, [Online]. Available: https://doi.org/10.59581/konstanta.v1i4.1722

J. Auskalnis, N. Paulauskas, A. Baskys, C. Technologies, and V. G. Technical, “Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network,” pp. 96–99, 2018.

S. Sugidamayatno and D. Lelono, “Outlier Detection Credit Card Transactions Using Local Outlier Factor Algorithm (LOF),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 4, p. 409, 2019, doi: 10.22146/ijccs.46561.

A. Desmet and M. Delore, “Leak detection in compressed air systems using unsupervised anomaly detection techniques,” Proc. Annu. Conf. Progn. Heal. Manag. Soc. PHM, pp. 211–220, 2017.

M. A. Kusnaldi, N. F. Syani, and Y. Afifah, “Perlindungan Data Pribadi dalam Penyelenggaraan Pemilu : Tantangan dan Tawaran,” vol. 7, no. 4, pp. 710–725, 2024.

R. Sistem, F. Teknik, and U. P. Bangsa, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan,” vol. 1, no. 10, pp. 504–510, 2021.

C. N. Nasution and Y. Widyaningsih, “Klasifikasi Pemilih dalam Pemilu 2019 di Indonesia Menggunakan Regresi Logistik Multinomial dan Chi-Square Automatic Decision Tree ( CHAID ),” vol. 6, no. 2, 2022.

S. Waworuntu, “Tinjauan Yuridis Mengenai Hak Pilih Masyarakat dalam Pemilihan Umum di Indonesia yang Belum 17 Tahun Tetapi Sudah Menikah,” Lex Adm., vol. 10, no. 5, 2022.