PENGEMBANGAN MODEL DEEP LEARNING UNTUK DETEKSI RETINOPATI DIABETIK MENGGUNAKAN METODE TRANSFER LEARNING

Yayes Kasnanda Bintang
Helmi Imaduddin


DOI: https://doi.org/10.29100/jipi.v9i3.5588

Abstract


Retinopati Diabetik (RD) merupakan komplikasi serius dari diabetes yang dapat menyebabkan kerusakan pada retina dan mengancam penglihatan. Deteksi dini RD sangat penting untuk mencegah kerusakan mata yang lebih lanjut. Dalam usaha untuk meningkatkan deteksi dini ini, teknologi deep learning, khususnya metode CNN, telah digunakan secara luas. Penelitian ini bertujuan untuk mengimplementasikan dan membandingkan kinerja empat arsitektur CNN yang berbeda, yaitu ResNet152V2, Xception, DenseNet201, dan InceptionV3, dalam klasifikasi gambar retina untuk mendeteksi RD. Pertama, dataset gambar retina dibagi menjadi kategori yang terinfeksi RD dan yang tidak. Kemudian, model CNN dikembangkan dan dilatih menggunakan data latih untuk mengklasifikasikan gambar. Penggunaan teknik augmentasi data membantu meningkatkan generalisasi model. Setelah melatih model, pengujian dilakukan menggunakan dataset uji yang terpisah untuk mengevaluasi kinerja masing-masing model. Hasil pengujian menunjukkan bahwa Xception dan DenseNet201 menghasilkan kinerja yang sangat baik dalam mendeteksi RD, dengan akurasi, presisi, recall, dan F1-Score mencapai 96%. Hasil evaluasi ini menegaskan bahwa teknologi deep learning, terutama dalam bentuk CNN, memiliki potensi besar dalam mendukung diagnosis medis, khususnya dalam deteksi penyakit mata kompleks seperti RD. Penggunaan model-model ini dapat memberikan manfaat yang signifikan bagi pasien RD, memungkinkan deteksi dini yang lebih efektif dan penanganan yang lebih tepat waktu. Dengan demikian, penelitian ini memberikan kontribusi penting dalam pengembangan solusi otomatis untuk diagnosis RD, yang dapat meningkatkan perawatan kesehatan mata secara keseluruhan.

Keywords


CNN, Deep learning, Retinopati Diabetik, Transfer Learning

Full Text:

PDF

Article Metrics :

References


K. Boyd, “Diabetic Retinopathy: Causes, Symptoms, Treatment,” American Academy of Ophthalmology. 2023. [Online]. Available: https://www.aao.org/eye-health/diseases/what-is-diabetic-retinopathy

P. A. W. Sebastian, Made Agus Kusumadjaja, I. G. A. M. Juliari, and I. G. A. R. Suryaningrum, “Karakteristik pasien diabetic retinopathy dengan dislipidemia di RSUP Sanglah Denpasar,” Intisari Sains Medis, vol. 14, no. 1, pp. 59–63, 2023, doi: 10.15562/ism.v14i1.1576.

A. R. Bhavsar, G. G. Emerson, M. V. Emerson, and D. J. Browning, “Epidemiology of diabetic retinopathy,” Diabet. Retin. Evidence-Based Manag., pp. 53–75, 2010, doi: 10.1007/978-0-387-85900-2_3.

M. Tilahun, T. Gobena, D. Dereje, M. Welde, and G. Yideg, “Prevalence of diabetic retinopathy and its associated factors among diabetic patients at debre markos referral hospital, Northwest Ethiopia, 2019: Hospital-based cross-sectional study,” Diabetes, Metab. Syndr. Obes., vol. 13, pp. 2179–2187, 2020, doi: 10.2147/DMSO.S260694.

Kemenkes RI, “PEDOMAN NASIONAL PELAYANAN KEDOKTERAN TATA LAKSANA RETINOPATI DIABETIKA,” 2023.

N. Han, J. Yao, and S. Li, “Accelerated Life Test and Life Prediction of an Electromechanical Actuator,” Proc. - 2019 Int. Conf. Artif. Intell. Adv. Manuf. AIAM 2019, pp. 647–651, 2019, doi: 10.1109/AIAM48774.2019.00134.

R. Yasashvini, V. Raja Sarobin M, R. Panjanathan, S. Graceline Jasmine, and L. Jani Anbarasi, “Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks,” Symmetry (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/sym14091932.

D. Le et al., “Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy,” Transl. Vis. Sci. Technol., vol. 9, no. 2, pp. 35–35, Jan. 2020, doi: 10.1167/TVST.9.2.35.

Y. S. Devi and S. P. Kumar, “A deep transfer learning approach for identification of diabetic retinopathy using data augmentation,” IAES Int. J. Artif. Intell. (IJ-AI, vol. 11, no. 4, pp. 1287–1296, 2022, doi: 10.11591/ijai.v11.i4.pp1287-1296.

Y. Yu, H. Lin, J. Meng, X. Wei, H. Guo, and Z. Zhao, “Deep transfer learning for modality classification of medical images,” Inf., vol. 8, no. 3, 2017, doi: 10.3390/info8030091.

S. Kulshrestha, “What Is A Convolutional Neural Network?,” Developing an Image Classifier Using TensorFlow. 2019. doi: 10.1007/978-1-4842-5572-8_6.

W. Supriyanti and D. A. Anggoro, “Classification of Pandavas Figure in Shadow Puppet Images using Convolutional Neural Networks,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 7, no. 1, 2021, doi: 10.23917/khif.v7i1.12484.

J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., vol. 77, pp. 354–377, 2018, doi: 10.1016/j.patcog.2017.10.013.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, vol. 2018-Janua, pp. 1–6, 2017, doi: 10.1109/ICEngTechnol.2017.8308186.

K. Zakka, “CS231n Convolutional Neural Networks for Visual Recognition,” Stanford Univ., pp. 1–18, 2021, [Online]. Available: https://cs231n.github.io/convolutional-network/#add

W. Setiawan, M. I. Utoyo, and R. Rulaningtyas, “Transfer learning with multiple pre-trained network for fundus classification,” Telkomnika (Tele-communication Comput. Electron. Control., vol. 18, no. 3, pp. 1382–1388, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14868.

KOUSTUBH, “ResNet , AlexNet , VGGNet , Inception : Understanding various architectures of Convolutional Networks.” pp. 1–7, 2018. [Online]. Available: https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in vision,” ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst. Nano-Bio Circuit Fabr. Syst., pp. 253–256, 2010, doi: 10.1109/ISCAS.2010.5537907.

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.

M. F. Naufal and S. F. Kusuma, “Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, p. 1293, 2021, doi: 10.25126/jtiik.2021865201.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826, 2016, doi: 10.1109/CVPR.2016.308.

Asia Pacific Tele-Ophthalmology Society, “APTOS 2019 blindness detection,” Kaggle Competition. 2019. [Online]. Available: https://www.kaggle.com/competitions/aptos2019-blindness-detection

N. Sikder, M. S. Chowdhury, A. Shamim Mohammad Arif, and A. Al Nahid, “Early blindness detection based on retinal images using ensemble learn-ing,” 2019 22nd Int. Conf. Comput. Inf. Technol. ICCIT 2019, 2019, doi: 10.1109/ICCIT48885.2019.9038439.

R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.

N. E. M. Khalifa, M. Loey, and M. H. N. Taha, “Insect pests recognition based on deep transfer learning models,” J. Theor. Appl. Inf. Technol., vol. 98, no. 1, pp. 60–68, 2020.