PREDICTION OF TUBERCULOSIS PATIENTS WITH MACHINE LEARNING ALGORITHMS
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
The top 10 causes of death. World Health Organization Available at, http://www.who.int/news-room/fact-sheets/detail/the-top-10causes-of-death (Accessed: 28th June 2018).
Obie, W. C. The Tubercle Bacillus, in the Pulmonary Lesion of Man. Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis. George Canetti. Q. Rev. Biol. 32, 201–201 (1957).
Praveen Weeratunga, David R.Moller, dan Ling-Pi Ho. Immune mechanisms of granuloma formation in sar-coidosis and tuberculosis. Published January 2, 2024
Hamisi Mahanga Swalehe and, Emmanuel Ifeanyi Obeagu. Tuberculosis: Current Diagnosis and Manage-ment. Elite Journal of Public Health. Volume 2 issue 1(2024).
Warner, D. F. & Mizrahi, V. Tuberculosis Chemotherapy: The Influence of Bacillary Stress and Damage Response Pathways on Drug Efficacy. Clin. Microbiol. Rev. 19, 558–570 (2006).
Ryan, G. J. et al . Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach. PLOS ONE 5, e11108 (2010).
Wallis, R. S., Palaci, M. & Eisenach, K. Persistence, Not Resistance, Is the Cause of Loss of Isoniazid Ef-fect. J. Infect. Dis. 195, 1870–1871 (2007).
Irwin, S. M. et al . Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect. Dis. 2, 251–267 (2016).
Muhammad Fadhlullah and Wahyono (2024). Classification of Tuberculosis Based on Chest X-ray images for Imbalance Data using SMOTE.
Chengqian Huang, dan Jing Zhuo (2024). Development and validation of a diagnostic model to differentiate spinal tuberculosis from pyogenic spondylitis by combining multiple machine learning algorithms. DOI: 10.17305/bb.2023.9663
Venkatesan Rajinikanth, Seifedine Kadry, and Pablo Moreno Ger (2023). ResNet18 Supported Inspection of Tuberculosis in Chest Radiographs With Integrated Deep, LBP, and DWT Features. DOI: 10.9781/ijimai.2023.05.004
Jamilu Yahaya Maipan-uku, Nadire Cavus, and Boran Sekeroglu (2023). Short-Term Tuberculosis Inci-dence Rate Prediction for Europe using Machine Learning Algorithms. DOI: 10.22094/JOIE.2023.1988443.2079
Fuad Anwar, Mohtar Yunianto, dan Rahmanisya Fani Aisha Putri (2023). Tuberculosis Detection using Gray Level Co-Occurrence Matrix (GLCM) and K-Nearest Neighbor (K-NN) Algorithms. doi: 10.13170/aijst.12.3.33241
Pedregosa, F, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011; 12(85): 2825-2830. Available from: https://jmlr.org/papers/v12/pedregosa11a.html.
LaValley, Michael P. “Logistic Regression.” Circulation 117, no. 18 (May 6, 2008): 2395–99. https://doi.org/10.1161/CIRCULATIONAHA.106.682658
Beltrán, Jorge F, Lisandra Herrera Belén, Jorge G Farias, Mauricio Zamorano, Nicolás Lefin, Javiera Mi-randa, and Fernanda Parraguez-Contreras. “VirusHound-I: Prediction of Viral Proteins Involved in the Eva-sion of Host Adaptive Immune Response Using the Random Forest Algorithm and Generative Adversarial Network for Data Augmentation.” Briefings in Bioinformatics 25, no. 1 (November 22, 2023): bbad434. https://doi.org/10.1093/bib/bbad434.
DeGregory, K. W., P. Kuiper, T. DeSilvio, J. D. Pleuss, R. Miller, J. W. Roginski, C. B. Fisher, et al. “A Review of Machine Learning in Obesity.” Obesity Reviews 19, no. 5 (May 2018): 668–85. https://doi.org/10.1111/obr.12667.
DeGregory, K. W., P. Kuiper, T. DeSilvio, J. D. Pleuss, R. Miller, J. W. Roginski, C. B. Fisher, et al. “A Review of Machine Learning in Obesity.” Obesity Reviews 19, no. 5 (May 2018): 668–85. https://doi.org/10.1111/obr.12667.