ANALISIS SENTIMEN: PREDIKSI RATING TERHADAP REVIEWS WISATAWAN TANJUNG PUTING PADA TRIPADVISOR MENGGUNAKAN SUPPORT VECTOR MACHINE

Quratul Ain
Ema Utami
Asro Nasiri


DOI: https://doi.org/10.29100/jipi.v9i3.5430

Abstract


Di era digital, sebagian besar data di internet berbentuk teks mentah. Data tambang emas ini sangat berharga karena berisi banyak informasi mendasar yang dapat diekstraksi menggunakan natural language processing dengan analisis sentimen. Termasuk data Reviews dan rating online di era digital menjadi hal pertimbangan penting dan terpercaya bagi wisatawan sebelum berkunjung ke sebuah objek wisata, salah satunya situs TripAdvisor. Penelitian ini akan memproses data teks ulasan wisatawan pada TripAdvisor pada objek Taman Nasional Tanjung Puting untuk menentukan sentimen wisatawan  berdasarkan rating 1 hingga 5. Data penelitian yang digunakan adalah sebanyak 390 reviews yang telah di-export dengan TripAdvisor Reviews Scrapper. Penelitian ini menggunakan Metode Support vector machine(SVM)  yang dikombinasikan dengan feature extraction dan Truncate singular-value decomposition (TSVD) pada preprocessing data. Penelitian ini dapat menampilkan visualisasi wordcloud top 10 kata yang paling banyak muncul berdasarkan rating sebagai pengetahuan dan informasi bagi pelaku industri pariwisata.  Berdasarkan pengujian dengan pembagian dataset 30:70 tingkat akurasi memperoleh rata-rata 80%.

Keywords


TripAdvisor; SVM; Online Reviews; Rating; Pariwisata.

Full Text:

PDF

Article Metrics :

References


S. W. Lee, G. Jiang, H. Y. Kong, and C. Liu, “A difference of multimedia consumer’s rating and review through sentiment analysis,” Multimed Tools Appl, vol. 80, no. 26–27, pp. 34625–34642, Nov. 2021, doi: 10.1007/s11042-020-08820-x.

M. M. Agüero-Torales, M. J. Cobo, E. Herrera-Viedma, and A. G. López-Herrera, “A cloud-based tool for sentiment analysis in reviews about restaurants on TripAdvisor,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 392–399. doi: 10.1016/j.procs.2019.12.002.

K. Puh and M. Bagić Babac, “Predicting sentiment and rating of tourist reviews using machine learning,” Journal of Hospitality and Tourism Insights, vol. 6, no. 3, pp. 1188–1204, Jun. 2023, doi: 10.1108/JHTI-02-2022-0078.

B. H. Ahmed and A. S. Ghabayen, “Review rating prediction framework using deep learning,” J Ambient Intell Humaniz Comput, vol. 13, no. 7, pp. 3423–3432, Jul. 2022, doi: 10.1007/s12652-020-01807-4.

“Sentiment Analysis of OYO App Reviews Using the Support Vector Machine Algorithm Analisis Sentimen terhadap Ulasan Aplikasi OYO menggunakan Algoritma Support Vector Machine Zaenal, Ika Ratna Indra Astutik.”

E. Widodo, G. D. Nursyafitri, O. N. Putri, and Y. Nurmalasari, “Sentiment Analysis of Visitors in Borobudur Temple With Support Vector Machine Based on TripAdvisor Review,” 2020.

W. Chen, Z. Xu, X. Zheng, Q. Yu, and Y. Luo, “Research on sentiment classification of online travel review text,” Applied Sciences (Switzerland), vol. 10, no. 15, Aug. 2020, doi: 10.3390/APP10155275.

Imamah et al., “Text Mining and Support Vector Machine for Sentiment Analysis of Tourist Reviews in Bangkalan Regency,” in Journal of Physics: Conference Series, Institute of Physics Publishing, 2020. doi: 10.1088/1742-6596/1477/2/022023.

A. A. Ningtyas, A. Solichin, and R. Pradana, “ANALISIS SENTIMEN KOMENTAR YOUTUBE TENTANG PREDIKSI RESESI EKONOMI TAHUN 2023 MENGGUNAKAN ALGORITME NAÏVE BAYES,” 2023.

A. Nugraha, Y. H. Chrisnanto, and R. Yuniarti, Seminar Nasional Sains & Teknologi Informasi (SENSASI) Prediksi Sentimen Pada Sosial Media Twitter Mengenai Produk Smartphone Menggunakan Algoritma K-NN Classification. [Online]. Available: http://prosiding.seminar-id.com/index.php/sensasi/issue/archivePage|251

S. A. Amira and M. I. Irawan, “Opinion Analysis of Traveler Based on Tourism Site Review Using Sentiment Analysis,” IPTEK The Journal for Technology and Science, vol. 31, no. 2, p. 223, May 2020, doi: 10.12962/j20882033.v31i2.6338.

R. A. E. Virgana, T. Sapanji, D. Hamdani, and P. Harahap, “Sentiment Analysis of the Top 5 E-commerce Platforms in Indonesia using Text Mining and Natural Language Processing (NLP),” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

R. Wahyudi et al., “Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” JURNAL INFORMATIKA, vol. 8, no. 2, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji

A. I. KABIR, K. AHMED, and R. KARIM, “Word Cloud and Sentiment Analysis of Amazon Earphones Reviews with R Programming Language,” Informatica Economica, vol. 24, no. 4/2020, pp. 55–71, Dec. 2020, doi: 10.24818/issn14531305/24.4.2020.05.

T. R. Sanusi, F. Andreas, B. N. Sari, U. Singaperbangsa, and K. Abstract, “Implementasi Algoritma Support Vector Classifier (SVC) dengan Data Training Numerik dan Teks untuk Mengklasifikasi SMS Spam,” Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 14, pp. 346–354, doi: 10.5281/zenodo.6994895.

J. Barry, “Sentiment Analysis of Online Reviews Using Bag-of-Words and LSTM Approaches.” [Online]. Available: https://www.yelp.com/dataset/challenge

G. Setiawan, H. Novianus Palit, and E. Setyati, “Aspect Based Sentiment Analysis pada Layanan Umpan Balik Universitas dengan Menggunakan Metode Naïve Bayes dan Latent Semantic Analysis.” [Online]. Available: www.kateglo.com

J. Khairnar and M. Kinikar, “Sentiment Analysis Based Mining and Summarizing Using SVM-MapReduce.” [Online]. Available: http://www.cs.cornell.edu/people/pabo/movie-review-

H. Duong Thi, K. Hoang Manh, V. Trinh Anh, T. Pham Thi Quynh, and T. Nguyen Viet, “Dimensionality Reduction with Truncated Singular Value Decomposition and K-Nearest Neighbors Regression for Indoor Localization.” [Online]. Available: www.ijacsa.thesai.org

E. K. Andana, M. Othman, and R. Ibrahim, “Comparative analysis of text classification using naive bayes and support vector machine in detecting negative content in Indonesian twitter,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 1.3 S1, pp. 356–362, 2019, doi: 10.30534/ijatcse/2019/6481.32019.

F. Nufairi, N. Pratiwi, and F. Herlando, “JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi ANALISIS SENTIMEN PADA ULASAN APLIKASI THREADS DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” vol. 9, no. 1, pp. 339–348, 2024, doi: 10.29100/jipi.v9i1.4929.

M. P. Dwi Cahyo, Widodo, and B. Prasetya Adhi, “Kinerja Algoritma Support Vector Machine dalam MenentukanKebenaran Informasi Banjir di Twitter,” PINTER : Jurnal Pendidikan Teknik Informatika dan Komputer, vol. 3, no. 2, pp. 116–121, Dec. 2019, doi: 10.21009/pinter.3.2.5.