DETEKSI TINGKAT KEMANISAN BUAH SEMANGKA (CITRULLUS LANATUS) BERDASARKAN CIRI KULIT BUAH DENGAN MENGGUNAKAN METODE CNN (CONVOLUTIONAL NEURAL NETWORK)
Abstract
Full Text:
PDFArticle Metrics :
References
Kuswandi, & Marta, N, “Sukses Bertanam Semangka” dalam Pendahuluan., edisi pertama, Jakarta, Indonesia, 2021, hal. 1
Sobir, & Siregar, F, “Budi daya semangka”dalam Saatnya Memanen Semangka, Bogor, Indonesia, 2010, hal. 92
Pengujian, B., & Identifikasi Barang, D.J.B.C, ”Nilai brix untuk menentukan kualitas pada buah-buahan. Indonesia Customs and Excise Laboratory Bulletin” dalam Kualitas Buah, Jakarta, Indonesia, 2016, hal. 15
Nazulan, Asnawi, dkk, “Detection of Sweetness Level for Fruits (Watermelon) With Machine Learning”. Dalam Proc. In 2020 IEEE Con-ference on Big Data and Analytics (ICBDA) (pp. 79-83).Nov. 2020. doi : 10.1109/ICBDA50157.2020.9289712
A’yun, Q., & Utaminingrum, F, ” Rancang Bangun Deteksi Kemanisan Buah Semangka menggunakan Metode Gray Level Co-Occurrence Matrix dan Backpropagation Neural Network berbasis Raspberry Pi”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X, 2022. Tersedia : https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10591
Contreras, K., Henry, A., Cáceres-Hernández, D., & Sanchez-Galan, J. E., “Comparing Convolutional Neural Networks and Deep Metric Learning Methods for Classification of Export Watermelon (Citrullus lanatus) Varieties", In 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE) (pp. 1141-1146), Juni 2022. doi : 10.1109/ISIE51582.2022.9831572
Villa, A. B., Jacinto, R. P., Ramos, M. A. A., & Alagao, S. P. L., “Determination of Citrullus Lanatus “Sweet-16” Ripeness Using Android-Based Application”, In 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE. Jun. 2021. doi : 10.1109/ICECCE52056.2021.9514216
Pardede, J., Sitohang, B., Akbar, S., & Khodra, M. L., “Implementation of transfer learning using VGG16 on fruit ripeness detection”, Int. J. Intell. Syst. Appl, 13(2), 52-61, 2021. Tersedia : www.mecs-press.net/ijisa/ijisa-v13-n2/IJISA-V13-N2-4.pdf
Alam, I. F., Sarita, M. I., & Sajiah, M. A., “Implementasi Deep Learning dengan Metode Convolutional Neural Network (CNN) untuk IdentifikasiObjek Secara Real Time Berbasis Sistem Android”, semanTIK, 237-244, 2019. Doi : http://dx.doi.org/10.55679/semantik.v5i2.7554
LeCun, Y., Bengio, Y., & Hinton, G., “Deep Learning”, Nature, 436-444, 2015. doi: 10.1038/nature14539