PERBANDINGAN KINERJA ALGORITMA RECURRENT NEURAL NETWORK (RNN) DAN LONG SHORT-TERM MEMORY (LSTM): STUDI KASUS PREDIKSI KEMACETAN LALU LINTAS JARINGAN PT XYZ
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
M. Ngafifi, “KEMAJUAN TEKNOLOGI DAN POLA HIDUP MANUSIA DALAM PERSPEKTIF SOSIAL BUDAYA,” Sukoharjo, 2014. [Daring]. Tersedia pada: http://www.tempo.co/read/news/2010/12/23
Simon Kemp, “DATAREPORTAL,” 15 Februari 2022. https://datareportal.com/reports/digital-2022-indonesia (diakses 2 Desember 2022).
E. Harahap, “Prediksi Kemacetan pada Jaringan Komputer Menggunakan Metode Naive Bayesian Classifier,” 2012.
M. NJ, S. Sahib, N. Suryana, dan B. Hussin, “UNDERSTANDING NETWORK CONGESTION EFFECTS ON PERFORMANCE-ARTICLES REVIEW,” Journal of Theoretical and Applied Information Technology, vol. 92, no. 2, hlm. 311–321, Okt 2016, [Dar-ing]. Tersedia pada: www.jatit.org
M. E. Dodan, Q. T. Vien, dan T. T. Nguyen, “Internet Traffic Prediction Using Recurrent Neural Networks,” EAI Endorsed Transac-tions on Industrial Networks and Intelligent Systems, vol. 9, no. 4, 2022, doi: 10.4108/eetinis.v9i4.1415.
W. Jiang, “Internet traffic prediction with deep neural networks,” Internet Technology Letters, vol. 5, no. 2, Mar 2022, doi: 10.1002/itl2.314.
U. Khaira, M. Alfalah, P. Claudia Septiani Gulo, dan R. Purnomo, “Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory,” vol. 5, no. 3, 2020.
Suryanto, K. N. Ramadhani, dan S. Mandala, Deep Learning Modernisasi Machine Learning untuk Big Data. Bandung: Informatika Bandung, 2019.
W. Nusalina, “Pengenalan Deep Learning : Neural Network,” https://medium.com/, 25 Juni 2019.
S. Sharma, S. Sharma, dan A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,” 2020. [Daring]. Tersedia pada: http://www.ijeast.com
Y. Bai, J. Xie, C. Liu, Y. Tao, B. Zeng, dan C. Li, “Regression modeling for enterprise electricity consumption: A comparison of re-current neural network and its variants,” International Journal of Electrical Power and Energy Systems, vol. 126, Mar 2021, doi: 10.1016/j.ijepes.2020.106612.
A. Mittal, “Understanding RNN and LSTM,” https://aditi-mittal.medium.com/, 12 Oktober 2019.
O. C, “Understanding LSTM Networks,” Internet: https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
Z. Shen, Y. Zhang, J. Lu, J. Xu, dan G. Xiao, “A novel time series forecasting model with deep learning,” Neurocomputing, vol. 396, hlm. 302–313, Jul 2020, doi: 10.1016/j.neucom.2018.12.084.
X. Shi dkk., “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,” 2015.
X. Ma, Z. Tao, Y. Wang, H. Yu, dan Y. Wang, “Long short-term memory neural network for traffic speed prediction using remote microwave sensor data,” Transp Res Part C Emerg Technol, vol. 54, hlm. 187–197, Mei 2015, doi: 10.1016/j.trc.2015.03.014.
U. Azmi, Z. N. Hadi, dan S. Soraya, “ARDL METHOD: Forecasting Data Curah Hujan Harian NTB,” Jurnal Varian, vol. 3, no. 2, hlm. 73–82, Mei 2020, doi: 10.30812/varian.v3i2.627.
M. Kuncoro, Metode kuantitatif : Teori dan aplikasi untuk bisnis dan ekonomi , 4 ed. Yogyakarta: Unit Penerbit dan Percetakan, 2011.