Prediction of a Sprint Deliverys Capabilities in Iterative-based Software Development
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
L. Gonalves, Scrum, Control. Manag. Rev., vol. 62, no. 4, pp. 4042, May 2018, doi: 10.1007/s12176-018-0020-3.
F. Hayat, A. U. Rehman, K. S. Arif, K. Wahab, and M. Abbas, The Influence of Agile Methodology (Scrum) on Software Project Management, Proc. - 20th IEEE/ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput. SNPD 2019, pp. 145149, Jul. 2019, doi: 10.1109/SNPD.2019.8935813.
J. Wright, Scrum: the complete guide to the agile project management framework that helps the software development lean team to efficiently structure and simplify the work & solve problems in half the time. p. 95, 2020.
M. Hron and N. Obwegeser, Why and how is Scrum being adapted in practice: A systematic review, J. Syst. Softw., vol. 183, p. 111110, Jan. 2022, doi: 10.1016/J.JSS.2021.111110.
M. Hron and N. Obwegeser, Scrum in practice: An overview of Scrum adaptations, Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2018-Janua, pp. 54455454, 2018, doi: 10.24251/hicss.2018.679.
M. Marinho, J. Noll, and S. Beecham, Uncertainty management for global software development teams, Proc. - 2018 Int. Conf. Qual. Inf. Commun. Technol. QUATIC 2018, pp. 238246, Dec. 2018, doi: 10.1109/QUATIC.2018.00042.
M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, and J. Grundy, Predicting Delivery Capability in Iterative Software Development, IEEE Trans. Softw. Eng., vol. 44, no. 6, pp. 551573, 2018, doi: 10.1109/TSE.2017.2693989.
M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, Predicting delays in software projects using networked classification, Proc. - 2015 30th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2015, pp. 353364, 2016, doi: 10.1109/ASE.2015.55.
C. Verwijs and D. Russo, A Theory of Scrum Team Effectiveness. 2021. [Online]. Available: http://arxiv.org/abs/2105.12439
P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, An effective approach for software project effort and duration estimation with machine learning algorithms, J. Syst. Softw., vol. 137, pp. 184196, Mar. 2018, doi: 10.1016/J.JSS.2017.11.066.
M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies, A Deep Learning Model for Estimating Story Points, IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 637656, 2019, doi: 10.1109/TSE.2018.2792473.
P. Ardimento and C. Mele, Using BERT to Predict Bug-Fixing Time, IEEE Conf. Evol. Adapt. Intell. Syst., vol. 2020-May, May 2020, doi: 10.1109/EAIS48028.2020.9122781.
M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, Characterization and prediction of issue-related risks in software projects, IEEE Int. Work. Conf. Min. Softw. Repos., vol. 2015-Augus, pp. 280291, 2015, doi: 10.1109/MSR.2015.33.
D. Denisko and M. M. Hoffman, Classification and interaction in random forests, Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 8, pp. 16901692, Feb. 2018, doi: 10.1073/PNAS.1800256115.
O. Sagi and L. Rokach, Ensemble learning: A survey, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, p. e1249, Jul. 2018, doi: 10.1002/WIDM.1249.
S. Zhang, M. Zong, X. Zhu, D. Cheng, and X. Li, Learning k for kNN classifi-cation, ACM Trans. Intell. Syst. Technol, vol. 8, no. 43, 2017, doi: 10.1145/2990508.
H. Al-Shehri et al., Student performance prediction using Support Vector Machine and K-Nearest Neighbor, Can. Conf. Electr. Comput. Eng., Jun. 2017, doi: 10.1109/CCECE.2017.7946847.
R. Hasan, S. Palaniappan, A. R. A. Raziff, S. Mahmood, and K. U. Sarker, Student Academic Performance Prediction by using Decision Tree Algorithm, 2018 4th Int. Conf. Comput. Inf. Sci. Revolutionising Digit. Landsc. Sustain. Smart Soc. ICCOINS 2018 - Proc., Oct. 2018, doi: 10.1109/ICCOINS.2018.8510600.
A. K. Hamoud, A. S. Hashim, and W. A. Awadh, Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis, Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 2, p. 26, 2018, doi: 10.9781/ijimai.2018.02.004.