Klasifikasi Ulasan Pengguna Aplikasi: Studi Kasus Aplikasi Ipusnas Perpustakaan Nasional Republik Indonesia (PNRI)

Andina Septiani, Indra Budi

Abstract


Menurunnya jumlah tren pengguna baru aplikasi iPusnas berpengaruh terhadap penurunan pencapaian nilai target laporan LKIP Pujasintara PNRI 2020 – 2024. Hal tersebut berkaitan dengan nilai peringkat ulasan pengguna aplikasi di Google Playstore yang dinilai masih lebih rendah dibandingkan aplikasi sejenis lainnya. Electronic Word of Mouth (EWOM) yang sangat berpengaruh terhadap keputusan calon pengguna baru aplikasi dalam mempertimbangkan aplikasi terbaik yang sejenis, karena melibatkan tinjauan nilai peringkat dan ulasan pengguna. Beberapa penelitian terdahulu membuktikan bahwa kesulitan selalu dihadapi ketika melakukan analisis atau penggalian informasi penting dalam ulasan pengguna aplikasi secara manual. Analisis ulasan sangat berguna untuk mengembangkan fitur layanan aplikasi agar dapat meningkatkan kepuasan pengguna dan peringkat nilai aplikasi, sehingga diperlukan alat bantu klasifikasi ulasan pengguna secara otomatis dengan mencari model terbaik yang sesuai. Penelitian ini menerapkan metodologi CRISP-DM, tetapi hanya sampai tahap evaluasi. Algoritma klasifikasi yang digunakan adalah Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), serta kombinasi fitur tf-idf unigram, bigram, dan trigram. Hasil penelitiannya adalah kombinasi fitur tf-idf unigram (F1) dengan algoritma SVM mencapai nilai terbaik untuk setiap nilai evaluasi precision, recall, dan f1-score masing-masing sebesar 87%. Nilai evaluasi terendah precision 55% dari hasil kombinasi fitur F2 dengan SVM, recall 42% dan f1-score 32% dari kombinasi fitur F3 dengan logistic regression.


Keywords


Klasifikasi Ulasan; Algoritma Classifier; Machine Learning; Text Mining

Full Text:

PDF

References


S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, and G. Fiza Asyrofi Ramadhan, “Sentiment analysis for go-jek on google play store,” J. Phys. Conf. Ser., vol. 1196, no. 1, 2019, doi: 10.1088/1742-6596/1196/1/012032.

Google, “Rating konten Aplikasi & Game di Google Play - Bantuan Google Play.” [Online]. Available: https://support.google.com/googleplay/answer/6209544?hl=id. [Accessed: 01-Nov-2020].

Perpustakaan Nasional, “Peraturan Perpustakaan Nasional Republik Indonesia Nomor 7 Tahun 2020 Tentang Rencana Strategis Perpustakaan Nasional Tahun 2020-2024,” no. Agustus 2020, 2020.

L. Kinerja, I. Pemerintah, P. Jasa, I. Perpustakaan, D. A. N. Pengelolaan, and N. Nusantara, “Perpustakaan Nasional.”

“Renstra Pujasintara 2020-2024 21-Jan-3.”

“IPusnas Dashboard.” [Online]. Available: https://dashboard-ipusnas.perpusnas.go.id/. [Accessed: 15-Jul-2022].

I. K. Mensah, “Perceived Usefulness and Ease of Use of Mobile Government Services,” Int. J. Technol. Diffus., vol. 11, no. 1, pp. 1–16, 2019, doi: 10.4018/ijtd.2020010101.

H. Yang and P. Liang, “Identification and classification of requirements from app user reviews,” Proc. Int. Conf. Softw. Eng. Knowl. Eng. SEKE, vol. 2015-Janua, pp. 7–12, 2015, doi: 10.18293/SEKE2015-063.

“Google Play Buku - Aplikasi di Google Play.” [Online]. Available: https://play.google.com/store/apps/details?id=com.google.android.apps.books. [Accessed: 15-Jul-2022].

“Amazon Kindle - Aplikasi di Google Play.” [Online]. Available: https://play.google.com/store/apps/details?id=com.amazon.kindle. [Accessed: 15-Jul-2022].

I. Almarashdeh and M. K. Alsmadi, “How to make them use it? Citizens acceptance of M-government,” Appl. Comput. Informatics, vol. 13, no. 2, pp. 194–199, 2017, doi: 10.1016/j.aci.2017.04.001.

A. Mahmood, “Identifying the influence of various factor of apps on google play apps ratings,” 2019.

A. Khairunnisa and E. Prasojo, “the Effect of Technology Acceptance Model, Electronic Word of Mouth (Ewom) and Service Quality in Application Contact …,” PROCEEDING ICTESS (Internasional …, vol. 2020, pp. 91–102, 2020.

N. Donthu, S. Kumar, N. Pandey, N. Pandey, and A. Mishra, “Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis,” J. Bus. Res., vol. 135, no. July, pp. 758–773, 2021, doi: 10.1016/j.jbusres.2021.07.015.

M. R. Islam, “Numeric Rating of Apps on Google Play Store by Sentiment Analysis on User Reviews,” pp. 1–4, 2014.

K. Sharma and K. Lin, “Review Spam Detector with Rating Consistency Check,” 2013.

D. Lo, M. R. Lyu, and I. King, “Automating App Review Response Generation,” 2019 34th IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 163–175, 2019, doi: 10.1109/ASE.2019.00025.

D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,” 2013 21st IEEE Int. Requir. Eng. Conf. RE 2013 - Proc., pp. 125–134, 2013, doi: 10.1109/RE.2013.6636712.

C. Tao, H. Guo, and Z. Huang, “Identifying security issues for mobile applications based on user review summarization,” Inf. Softw. Technol., vol. 122, no. October 2019, p. 106290, 2020, doi: 10.1016/j.infsof.2020.106290.

L. V. G. Carreno and K. Winbladh, “Analysis of user comments: An approach for software requirements evolution,” Proc. - Int. Conf. Softw. Eng., pp. 582–591, 2013, doi: 10.1109/ICSE.2013.6606604.

D. Tuhenay, “Perbandingan Klasifikasi Bahasa Menggunakan Metode Naïve Bayes Classifier (NBC) Dan Support Vector Machine (SVM),” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 2, pp. 105–111, 2021, doi: 10.33387/jiko.v4i2.2958.

Y. Ekanata and I. Budi, “Mobile application review classification for the Indonesian language using machine learning approach,” 2018 4th Int. Conf. Comput. Technol. Appl. ICCTA 2018, pp. 117–121, 2018, doi: 10.1109/CATA.2018.8398667.

T. Widiyaningtyas, I. A. Elbaith Zaeni, and R. Al Farisi, “Sentiment Analysis Of Hotel Review Using N-Gram And Naive Bayes Methods,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 4–8, 2019, doi: 10.1109/ICIC47613.2019.8985946.

E. Suprayogi, I. Budi, and R. Mahendra, “Information extraction for mobile application user review,” 2018 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2018, pp. 343–348, 2019, doi: 10.1109/ICACSIS.2018.8618164.

E. Guzman, M. El-Haliby, and B. Bruegge, “Ensemble methods for app review classification: An approach for software evolution,” Proc. - 2015 30th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2015, pp. 771–776, 2015, doi: 10.1109/ASE.2015.88.

“Fision - Aplikasi di Google Play.” [Online]. Available: https://play.google.com/store/apps/details?id=mam.reader.ipusnas. [Accessed: 19-Oct-2021].

J. Xu and Y. Cai, “Incorporating context-relevant knowledge into convolutional neural networks for short text classification*,” 33rd AAAI Conf. Artif. Intell. AAAI 2019, 31st Innov. Appl. Artif. Intell. Conf. IAAI 2019 9th AAAI Symp. Educ. Adv. Artif. Intell. EAAI 2019, pp. 10067–10068, 2019, doi: 10.1609/aaai.v33i01.330110067.

M. Allahyari et al., “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques,” 2017.

F. R. Irawan et al., “Analisis Sentimen Terhadap Pengguna Gojek Menggunakan Metode K-Nearset Neighbors Sentiment Analysis of Gojek Users Using K-Nearest Neighbor,” vol. 5, no. 1, pp. 62–68, 2022, doi: 10.33387/jiko.

Dimsyiar M Al Hafiz, Khoirul Amaly, Javen Jonathan, M Teranggono Rachmatullah, and Rosidi, “Sistem Prediksi Penyakit Jantung Menggunakan Metode Naive Bayes,” J. Rekayasa Elektro Sriwij., vol. 2, no. 2, pp. 151–157, 2021, doi: 10.36706/jres.v2i2.29.

M. M. Mala Olhang, S. Achmadi, and F. . A. Wibisono, “Analisis Sentimen Pengguna Twitter Terhadap Covid-19 Di Indonesia Menggunakan Metode Naive Bayes Classifier (Nbc),” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 214–221, 2020, doi: 10.36040/jati.v4i2.2695.

C. C. Aggarwal and C. X. Zhai, Mining text data, vol. 9781461432. 2013.

S. A. Lee, Business Intelligence and Analytics Ramesh Sharda Dursun Delen Efraim Turban Tenth Edition. 2014.

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, “How can i improve my app? Classifying user reviews for software maintenance and evolution,” 2015 IEEE 31st Int. Conf. Softw. Maint. Evol. ICSME 2015 - Proc., no. September, pp. 281–290, 2015, doi: 10.1109/ICSM.2015.7332474.

V. Ganganwar, “An overview of classification algorithms for imbalanced datasets,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 4, pp. 42–47, 2012.

F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” M.Sc. Thesis, Append. D, vol. pp, pp. 39–46, 2003.

A. Giachanou and F. Crestani, “Like it or not: A survey of Twitter sentiment analysis methods,” ACM Comput. Surv., vol. 49, no. 2, 2016, doi: 10.1145/2938640.




DOI: https://doi.org/10.29100/jipi.v7i4.3216

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
ISSN 2540-8984
Published by
Prodi Pendidikan Teknologi Informasi
STKIP PGRI Tulungagung

Website : https://jurnal.stkippgritulungagung.ac.id/index.php/jipi/index
Email : jipi@stkippgritulungagung.ac.id


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.