KLASIFIKASI TUMBUHAN ANGIOSPERMAE MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERDASARKAN PADA BENTUK DAUN

Arvin Christopher
Teady Matius Surya Mulyana - [ http://orcid.org/0000-0003-3674-4936 ]


DOI: https://doi.org/10.29100/jipi.v7i4.3211

Abstract


About 250,000 living plant species are plants of the Angiosperms group. The diversity of Angiosperm plants in Indonesia makes it difficult for someone to carry out the process of identifying plants into the monocotyledonous or dicotyledonous class. This is the background for doing this research by classifying Angiosperms plants using the K-Nearest Neighbor algorithm. Research related to classifying manga plants using the Backpropagation algorithm with feature extraction using GLCM produces an accuracy of 49%. Furthermore, the classification of plants using the K-Nearest Neighbor algorithm with leaf morphological features extraction resulted in an accuracy of 92%. There is also a classification of citrus plants using the K-Nearest Neighbor algorithm with leaf texture feature extraction using GLCM resulting in an accuracy of 81.48%. In this study, the K-Nearest Neighbor classification algorithm is used with feature extraction using a population matrix with the aim of examining the level of classification accuracy using population matrix feature extraction. The data used is a digital leaf image which will extract its shape features using a population matrix feature by doing image pre-processing and detection first. The data is then divided into training data of 70%, and test data of 30%. The results of this study are the accuracy of the test data obtained by 85% with the number of neighbors k=1. After testing, an evaluation of the model will be carried out using a confusion matrix, which consists of accuracy, precision, recall, and f-1 score.

Keywords


angiosperm; canny; confusion matrix; k-nearest neighbor; population matrix;

Full Text:

PDF

Article Metrics :

References


W. Anggraini, Keanekaragaman Hayati Dalam Menunjang Perekonomian Masyarakat Kabupaten Oku Timur, J. Aktual, vol. 16, no. 2, p. 99, 2018, doi: 10.47232/aktual.v16i2.24.

P. T. Violetta, KLHK: Luas tutupan hutan Indonesia capai 95,6 juta hektare, www.antaranews.com, 2021. https://www.antaranews.com/berita/2588981/klhk-luas-tutupan-hutan-indonesia-capai-956-juta-hektare (accessed Mar. 08, 2022).

A. E. Prasetyo, I. Lubis, and A. Budiman, Prosiding Pemodelan 3D Virtual Reality Pada Tumbuhan Gymnospermae dan Angiospermae Sebagai Media Pembelajaran, Semin. Nas. , 2021, [Online]. Available: http://prosiding.snastikom.com/index.php/SNASTIKOM2020/article/view/104.

J. Safitri, P. Meilina, and S. Nurbaya Ambo, Implementasi Augmented Reality Sebagai Pembelajaran Pertumbuhan Tanaman Dikotil Dan Monokotil Untuk Sekolah Dasar, J. Sist. Informasi, Teknol. Inform. dan Komput., vol. 9, no. 1, pp. 3238, 2018, doi: 10.24853/justit.9.1.32-38.

E. Budianita, T. Ulfadhyani, and F. Yanto, Implementasi Algoritma Canny Dan Backpropagation Untuk Mengklasifikasi Jenis Tanaman Mangga, Semin. Nas. Teknol. Informasi, Komun. dan Ind., vol. 11, no. November, pp. 1321, 2019.

K. Saputra and S. Wahyuni, Identifikasi Jenis Tanaman Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan K-Nearest Neighbor, J. Tek. dan Inform., vol. 5, no. 1, pp. 2429, 2018, [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Folio.

A. Y. Muniar, Klasifikasi Tanaman Jeruk Berdasarkan Fitur Tekstur Daun Menggunakan Metode K-Nearest Neighbor, Celeb. Eng. J., p. pp 18-27, 2019.

D. K. Indahsari and Y. I. Kurniawan, APLIKASI PREDIKSI USIA KELAHIRAN DENGAN METODE K-NEAREST NEIGHBOR, J. Kebidanan, vol. 11, no. 01, p. 1, Jul. 2019, doi: 10.35872/jurkeb.v11i01.335.

R. Perangin-angin and E. J. G. Harianja, Comparison detection edge lines algoritma canny dan sobel, J. TIMES, vol. VIII, no. 2, pp. 3542, 2019.

B. Sinaga, J. Manurung, M. H. Silalahi, and S. Ramen, Deteksi Tepi Citra Dengan Metode Laplacian of Gaussian Dan Metode Canny, J. Sains Komput. Inform., vol. 5, no. 2, pp. 10661084, 2021, doi: 10.30645/j-sakti.v5i2.401.

W. Supriyatin, Perbandingan Metode Sobel, Prewitt, Robert dan Canny pada Deteksi Tepi Objek Bergerak, Ilk. J. Ilm., vol. 12, no. 2, pp. 112120, 2020, doi: 10.33096/ilkom.v12i2.541.112-120.

K. H. Mahmud, Adiwijaya, and S. Al Faraby, Prosiding Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network, e-Proceeding Eng., vol. 6, no. 1, pp. 21272136, 2019.

S. A. Hantoush Alrubaie and A. H. Hameed, Dynamic Weights Equations for Converting Grayscale Image to RGB Image, J. Univ. BABYLON Pure Appl. Sci., vol. 26, no. 8, pp. 122129, 2018, doi: 10.29196/jubpas.v26i8.1677.

A. Kurniasari and Jalinas, Pendeteksian Tingkat Kepadatan Jalan Menggunakan Metode Canny Edge Detection, J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 3, pp. 239248, 2020, doi: 10.35760/tr.2020.v25i3.3419.

M. A. Masril, Yuhandri, and Jufriadif Naam, Analisis Perbandingan Perbaikan Kualitas Citra Pada Motif Batik Dengan Konsep Deteksi Tepi Robert, Sobel, Canny Menggunakan Metode Morfologi, J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 1, pp. 3641, 2019, doi: 10.29207/resti.v3i1.821.

A. Setiawan and K. M. Suryaningrum, Optical Character Recognition Jepang Menggunakan Matriks Populasi Piksel Dan L1-Metric, J. Ilm. Teknol. Infomasi Terap., vol. 4, no. 1, pp. 6272, 2017, doi: 10.33197/jitter.vol4.iss1.2017.151.

M. Z. Luhing and K. M. Suryaningrum, Pengenalan karakter huruf Rusia dengan algoritma perceptron, Processor, vol. 13, no. 1, pp. 11601172, 2018.

A. Amalia, A. Zaidiah, and I. N. Isnainiyah, Prediksi Kualitas Udara Menggunakan Algoritma K- Nearest Neighbor, JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 496507, 2022, doi: 10.29100/jipi.v7i2.2843.

T. Harlina and E. Handayani, Klasifikasi Motif Batik Banyuwangi Menggunakan Metode K-Nearest Neighbor (K-NN) Berbasis Android, JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 8296, Feb. 2022, doi: 10.29100/jipi.v7i1.2411.

A. Alfani W.P.R., F. Rozi, and F. Sukmana, PREDIKSI PENJUALAN PRODUK UNILEVER MENGGUNAKAN METODE K-NEAREST NEIGHBOR, JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 155160, Jun. 2021, doi: 10.29100/jipi.v6i1.1910.