Personality Classification Of Social Media Users Based On Type Of Work And Interest In Information

Rizky Yudha Pratama
Sri Suryani Prasetyowati
Yuliant Sibaroni


DOI: https://doi.org/10.29100/jipi.v7i4.3196

Abstract


Social media is a platform that makes it easier for users to interact and get to know each other because in social media there are profiles, statuses, and user uploads. Therefore, many studies utilize social media because there is much information that can be explored on social media, one of which is research on the personality classification of social media users. However, many studies related to personality classification of social media users have failed due to too many model target classes, which result in low accuracy. In this research, the author uses the Myers-Briggs Type Indicator (MBTI) model, which is focused on only two personality classes, namely "Introvert/Extrovert" and "Sensor/Intuitive" with the features type of work and interest in information which are feature representations of the personality class used to reduce the target class. The best accuracy result is 95.87% after classifying using two personality classes.

Full Text:

PDF

Article Metrics :

References


N. Istiani and A. Islamy, Fikih Media Sosial Di Indonesia, Asy SyarIyyah J. Ilmu SyariAh Dan Perbank. Islam, vol. 5, no. 2, pp. 202225, 2020, doi: 10.32923/asy.v5i2.1586.

Y. Mehta, N. Majumder, A. Gelbukh, and E. Cambria, Recent trends in deep learning based personality detection, Artif. Intell. Rev., vol. 53, no. 4, pp. 23132339, 2020, doi: 10.1007/s10462-019-09770-z.

X. Wang, Y. Sui, K. Zheng, Y. Shi, and S. Cao, Personality classification of social users based on feature fusion, Sensors, vol. 21, no. 20, 2021, doi: 10.3390/s21206758.

B. Y. Pratama and R. Sarno, Personality classification based on Twitter text using Naive Bayes, KNN and SVM, Proc. 2015 Int. Conf. Data Softw. Eng. ICODSE 2015, no. November, pp. 170174, 2016, doi: 10.1109/ICODSE.2015.7436992.

V. Ong et al., Personality prediction based on Twitter information in Bahasa Indonesia, Proc. 2017 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2017, vol. 11, pp. 367372, 2017, doi: 10.15439/2017F359.

L. C. Lukito, A. Erwin, J. Purnama, and W. Danoekoesoemo, Social media user personality classification using computational linguistic, Proc. 2016 8th Int. Conf. Inf. Technol. Electr. Eng. Empower. Technol. Better Futur. ICITEE 2016, no. September, 2017, doi: 10.1109/ICITEED.2016.7863313.

A. Souri, S. Hosseinpour, and A. M. Rahmani, Personality classification based on profiles of social networks users and the five-factor model of personality, Human-centric Comput. Inf. Sci., vol. 8, no. 1, 2018, doi: 10.1186/s13673-018-0147-4.

M. H. Amirhosseini and H. Kazemian, Machine learning approach to personality type prediction based on the MyersBriggs type indicator, Multimodal Technol. Interact., vol. 4, no. 1, 2020, doi: 10.3390/mti4010009.

irwan budiman, M. R. Faisal, and D. T. Nugrahadi, Studi Ekstraksi Fitur Berbasis Vektor Word2Vec pada Pembentukan Fitur Berdimensi Rendah, J. Komputasi, vol. 8, no. 1, pp. 6269, 2020, doi: 10.23960/komputasi.v8i1.2517.

S. Robertson, Understanding inverse document frequency: On theoretical arguments for IDF, J. Doc., vol. 60, no. 5, pp. 503520, 2004, doi: 10.1108/00220410410560582.

S. Ruggieri, Efficient C4.5, IEEE Trans. Knowl. Data Eng., vol. 14, no. 2, pp. 438444, 2002, doi: 10.1109/69.991727.

A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, An introduction to decision tree modeling, J. Chemom., vol. 18, no. 6, pp. 275285, 2004, doi: 10.1002/cem.873.

Suyanto, Data mining: untuk klasifikasi dan klasterisasi data / Suyanto. Bandung: Penerbit Informatika, 2017.

D. Noviana, Y. Susanti, and I. Susanto, Analisis Rekomendasi Penerima Beasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Algoritma C4.5, Semin. Nas. Penelit. Pendidik. Mat. 2019 UMT, pp. 7987, 2019.

A. Luque, A. Carrasco, A. Martn, and A. de las Heras, The impact of class imbalance in classification performance metrics based on the binary confusion matrix, Pattern Recognit., vol. 91, pp. 216231, 2019, doi: 10.1016/j.patcog.2019.02.023.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Data Min. Concepts Tech., 2012, doi: 10.1016/C2009-0-61819-5.