Sistem Prediksi Penyakit Jantung Koroner Menggunakan Metode Naive Bayes
Abstract
Penyebab dari penyakit jantung koroner yaitu penyumbatan pembuluh darah koroner, penyakit ini sangat diperhatikan oleh seluruh kalangan masyarakat dikarenakan pengaruh yang disebabkant oleh penyakit tersebut. Penelitian ini memiliki tujuan untuk membuat prediksi yang akan membantu para dokter untuk melakukan diagnose dengan tepat dan akurat sehingga penyakit jantung koroner dapat ditangani lebih awal. Salah satu algoritma klasifikasi data mining yang digunakan pada penelitian ini adalah algoritma Nae Bayes Classifier. Algoritma ini diterapkan dengan tujuan untuk menghitung probabilitas kemungkinan seseorang pasien berdasarkan data rekam medis pasien. Rekam medis pasien diperoleh dari kaggle untuk dilakukan percobaan pada sistem yang akan dibuat. Dataset awal memuat 303 record setelah dilakukan preprocessing memuat 296 record. Percobaan pada penelitian ini dilakukan sebanyak 3 percobaan dengan membagi data latih dan data uji. Hasil yang diperoleh dalam percobaan pertama memiliki akurasi paling tinggi yaitu sebesar 83.1%. Diharapkan dengan adanya sistem ini dapat membantu dokter untuk mendiagnosis penyakit jantung koroner.
Keywords
Full Text:
PDFArticle Metrics :
References
Bella, Airindya. (2022). Macam-Macam Penyakit Jantung, Gejala, dan Penyebabnya. Diakses pada: https://www.alodokter.com/macam-macam-penyakit-jantung-gejala-dan-penyebabnya
P2PTM Kemenkes RI. (2019). Hari Jantung Sedunia (World Heart Day): Your Heart is Our Heart Too. Diakses pada: http://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/hari-jantung-sedunia-world-heart-day-your-heart-is-our-heart-too
Mawarti, Tandjania. (2015). Penerapan Algoritma Klasifikasi Nave Bayes Untuk Prediksi Penyakit Hipertensi (Studi Kasus : Klinik Yashika Ciganjur).
Pattekari, S. A., Parveen, A., 2012, Prediction System for Heart Disease Using Nave Bayes, International Journal of Advanced Computer and Mathematical Sciences, ISSN 2230-9624, Vol. 3, No 3, Hal 290-294.
Hutahean, Jeperson. (2015). Konsep Sistem Informasi. Yogyakarta: Deepublish.
Mulyani, Sri. 2016. Sistem Informasi Management Rumah Sakit : Analisis Dan Perancangan. Bandung: Abdi Sistematika.
Herdianto. (2013). Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation. Medan: Universitas Sumatera Utara.
Belajarpython. Pendahuluan Python. Diakses pada: https://belajarpython.com/tutorial/apa-itu-python
Maulid, Reyvan. (2021). Mengenal Flask, Library Machine Learning Python Idaman Developer. Diakses pada: https://dqlab.id/mengenal-flask-library-machine-learning-python-idaman-developer
Rahman, Rashik. (2021). Heart Attack Analysis & Prediction Dataset. Diakses pada: https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
Han, J., & Kamber, M. (2012). Data Mining: Concept and Techniques. 3rd Edition. New York: Morgan Kaufmann.