CHATBOT FOR KNOWLEDGE – BASED MUSEUM RECOMMENDER SYSTEM (CASE STUDY: MUSEUM IN JAKARTA)

M. Rayhan Hakim, Abdurahman Baizal

Abstract


Sistem pemberi rekomendasi yang umum digunakan untuk merekomendasi museum adalah content-based filtering dan collaborative filtering. Tetapi, sistem pemberi rekomendasi tersebut mengalami permasalahan seperti cold start dan data sparsity, karena beberapa museum masih memiliki rating dan feedback yang rendah. Untuk mengatasi masalah tersebut, knowledge-based recommender system dapat digunakan untuk memberikan rekomendasi museum berdasarkan preferensi pengguna, sehingga sistem tidak perlu menggunakan rating dan feedback. Preferensi pengguna bisa didapatkan menggunakan conversational recommender system dengan memanfaatkan percakapan dua arah antara pengguna dengan sistem. Chatbot merupakan salah satu bentuk conversational recommender system yang umum digunakan. Penelitian ini mengembangkan sebuah chatbot untuk merekomendasikan museum di Jakarta menggunakan knowledge-based recommender system. Sistem yang dikembangkan menggunakan Rasa framework untuk membangun chatbot yang mampu melakukan percakapan dengan pengguna. Knowledge graph dan k-nearest neighbor digunakan untuk merekomendasikan museum berdasarkan preferensi pengguna. Berdasarkan evaluasi yang telah dilakukan, sistem yang dikembangkan dapat memahami pesan pengguna dan memberikan rekomendasi museum berdasarkan preferensi pengguna. Tetapi, performa sistem masih dapat dikembangkan supaya sistem dapat diandalkan pada skenario dunia nyata.


Keywords


knowledge graph, recommender system, chatbot, cultural heritage

Full Text:

PDF

References


S. Rossi, F. Barile, C. Galdi, and L. Russo, “Recommendation in museums: paths, sequences, and group satisfaction maximization,” Multimedia Tools and Applications, vol. 76, no. 24, pp. 26031–26055, 2017, doi: 10.1007/s11042-017-4869-5.

R. Capuano, H. Muccini, and F. Rossi, “CatreS: A context-aware recommender system for indoor and outdoor museums tours planning,” CEUR Workshop Proceedings, vol. 2601, pp. 31–34, 2020.

L. Volkova et al., “Recommender System for Tourist Itineraries Based on Aspects Extraction from Reviews Corpora,” Polibits, vol. 57, pp. 81–88, 2018, doi: 10.17562/pb-57-9.

L. Ravi, S. Vairavasundaram, S. Palani, and M. Devarajan, “Location-based personalized recommender system in the internet of cultural things,” Journal of Intelligent and Fuzzy Systems, vol. 36, no. 5, pp. 4141–4152, 2019, doi: 10.3233/JIFS-169973.

Z. K. A. Baizal, D. H. Widyantoro, and N. U. Maulidevi, “Computational model for generating interactions in conversational recommender system based on product functional requirements,” Data and Knowledge Engineering, vol. 128, Jul. 2020, doi: 10.1016/j.datak.2020.101813.

Z. K. A. Baizal, D. Tarwidi, and B. Wijaya, “Tourism Destination Recommendation Using Ontology-based Conversational Recommender System,” International Jounal of Computing and Digital System, vol. 1, no. 1, 2021.

L. Deladiennee and Y. Naudet, “A graph-based semantic recommender system for a reflective and personalised museum visit: Extended abstract,” Proceedings - 12th International Workshop on Semantic and Social Media Adaptation and Personalization, SMAP 2017, pp. 88–89, 2017, doi: 10.1109/SMAP.2017.8022674.

Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, “Recommendation systems: Algorithms, challenges, metrics, and business opportunities,” Applied Sciences (Switzerland), vol. 10, no. 21, pp. 1–20, 2020, doi: 10.3390/app10217748.

C. Ghidini, B. Magnini, and R. Goebel, Improving the User Experience with a Conversational Recommender System, no. November 2018. Springer International Publishing, 2018. doi: 10.1007/978-3-030-03840-3.

A. M. Rahman, A. al Mamun, and A. Islam, “Programming challenges of chatbot: Current and future prospective,” 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC 2017, vol. 2018-Janua, pp. 75–78, 2018, doi: 10.1109/R10-HTC.2017.8288910.

C. I. Lee, T. C. Hsia, H. C. Hsu, and J. Y. Lin, “Ontology-based tourism recommendation system,” 2017 4th International Conference on Industrial Engineering and Applications, ICIEA 2017, pp. 376–379, 2017, doi: 10.1109/IEA.2017.7939242.

A. Messina, H. Pribadi, J. Stichbury, M. Bucci, S. Klarman, and A. Urso, “BioGrakn: A knowledge graph-based semantic database for biomedical sciences,” Advances in Intelligent Systems and Computing, vol. 611, pp. 299–309, 2018, doi: 10.1007/978-3-319-61566-0_28.

A. Patel and S. Jain, “Present and future of semantic web technologies: a research statement,” International Journal of Computers and Applications, vol. 0, no. 0, pp. 1–10, 2019, doi: 10.1080/1206212X.2019.1570666.

“Semantic Web Standards and TypeDB.” https://docs.vaticle.com/docs/comparisons/semantic-web-and-typedb (accessed Dec. 16, 2021).

E. Çano and M. Morisio, “Hybrid recommender systems: A systematic literature review,” Intelligent Data Analysis, vol. 21, no. 6, pp. 1487–1524, 2017, doi: 10.3233/IDA-163209.

“What is the CIDOC CRM?” https://cidoc-crm.org/ (accessed Dec. 16, 2021).

H. A. Abu Alfeilat et al., “Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review,” Big Data, vol. 7, no. 4, pp. 221–248, 2019, doi: 10.1089/big.2018.0175.




DOI: https://doi.org/10.29100/jipi.v7i2.2738

DOI (PDF): https://doi.org/10.29100/jipi.v7i2.2738.g1171

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
ISSN 2540-8984
Published by
Prodi Pendidikan Teknologi Informasi
STKIP PGRI Tulungagung

Website : https://jurnal.stkippgritulungagung.ac.id/index.php/jipi/index
Email : jipi@stkippgritulungagung.ac.id


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.