PENERAPAN METODE RESIDUAL NETWORK (RESNET) DALAM KLASIFIKASI PENYAKIT PADA DAUN GANDUM
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
M. Figueroa, K. E. Hammond-Kosack, and P. S. Solomon, A review of wheat diseasesa field perspective, Mol. Plant Pathol., vol. 19, no. 6, pp. 15231536, 2018, doi: 10.1111/mpp.12618.
S. Tira, Tekan Ketergantungan Impor, Masyarakat Diminta Gunakan Tepung Lokal, Merdeka, 19 Maret 2021, [Online]. Tersedia: https://www.merdeka.com/uang/tekan-ketergantungan-impor-masyarakat-diminta-gunakan-tepung-lokal.html [Diakses: 6 September 2021].
R. C. Downie et al., Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment, Phytopathology, p. PHYTO-07-20-028, 2021, doi: 10.1094/phyto-07-20-0280-rvw.
Z. Mi, X. Zhang, J. Su, D. Han, and B. Su, Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism and Images From Mobile De-vices, Front. Plant Sci., vol. 11, no. September, pp. 111, 2020, doi: 10.3389/fpls.2020.558126.
A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, Deep Learning for Computer Vision: A Brief Review, Comput. Intell. Neuro-sci., vol. 2018, 2018, doi: 10.1155/2018/7068349.
L. Zhou, C. Zhang, F. Liu, Z. Qiu, and Y. He, Application of Deep Learning in Food: A Review, Compr. Rev. Food Sci. Food Saf., vol. 18, no. 6, pp. 17931811, 2019, doi: 10.1111/1541-4337.12492.
A. Tsany and R. Dzaky, Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network, vol. 8, no. 2, pp. 30393055, 2021.
M. Metode, F. Multiple, C. Decision, M. Fmcdm, and D. Yogyakarta, Indonesian Journal of Business Intelligence, vol. 3, no. 2, pp. 5460, 2020.
Y. S. HARIYANI, S. HADIYOSO, and T. S. SIADARI, Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Net-work, ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, p. 443, 2020, doi: 10.26760/elkomika.v8i2.443.
O. Getch, Wheat Leaf dataset, Kaggle, 2021, [online]. Tersedia: https://www.kaggle.com/olyadgetch/wheat-leaf-dataset [Diakses: 25 Agustus 2021].
H. Salehinejad, S. Valaee, T. Dowdell, and J. Barfett, IMAGE AUGMENTATION USING RADIAL TRANSFORM FOR TRAINING DEEP NEURAL NETWORKS Department of Electrical & Computer Engineering , University of Toronto , Toronto , Canada Department of Medical Imag-ing , St . Michael s Hospital , University of Toronto , Toro, 2018 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 30163020, 2018.
S. S. Han et al., Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network, PLoS One, vol. 13, no. 1, pp. 114, 2018, doi: 10.1371/journal.pone.0191493.
F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M. Farid, CUSBoost: Cluster-Based Under-Sampling with Boosting for Imbalanced Classification, 2nd Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solut. CSITSS 2017, pp. 15, 2018, doi: 10.1109/CSITSS.2017.8447534.
J. Xu, Y. Zhang, and D. Miao, Three-way confusion matrix for classification: A measure driven view, Inf. Sci. (Ny)., vol. 507, pp. 772794, 2020, doi: 10.1016/j.ins.2019.06.064.
B. Eagan, M. Misfeldt, and A. Siebert-Evenstone, Advances in Quantitative Ethnography, vol. 1. 2019.