PARSING STRUKTUR PARAGRAF BERBASIS NEURAL NETWORK
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
P. Clark and O. Etzioni, My Computer Is an Honor Student But How Intelligent Is It? Standardized Tests as a Measure of AI, ojs.aaai.org, 2016, Accessed: Jun. 18, 2022. [Online]. Available: www.allenai.org
P. C.- AAAI and undefined 2015, Elementary school science and math tests as a driver for AI: Take the aristo challenge!, Citeseer, Accessed: Jun. 18, 2022. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.9514&rep=rep1&type=pdf
L. Zhou, S. Dai, and L. Chen, Learn to Solve Algebra Word Problems Using Quadratic Programming, Association for Computational Linguistics, 2015. Accessed: Jun. 18, 2022. [Online]. Available: http://pan.baidu.com/
S. Roy, T. Vieira, and D. Roth, Reasoning about Quantities in Natural Language, Trans Assoc Comput Linguist, vol. 3, pp. 113, Dec. 2015, doi: 10.1162/tacl_a_00118.
A. Mitra and C. Baral, Learning To Use Formulas To Solve Simple Arithmetic Problems. Accessed: Jun. 18, 2022. [Online]. Availa-ble: http://allenai.org/euclid.html
R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. D. Ang, Parsing Algebraic Word Problems into Equations, Trans Assoc Comput Linguist, vol. 3, pp. 585597, Dec. 2015, doi: 10.1162/tacl_a_00160.
Y. Wang, X. Liu, and S. Shi, Deep Neural Solver for Math Word Problems. Accessed: Jun. 18, 2022. [Online]. Available: https://aclanthology.org/D17-1088/
L. Wang et al., MathDQN: Solving Arithmetic Word Problems via Deep Reinforcement Learning. Accessed: Jun. 18, 2022. [Online]. Available: www.aaai.org
R. Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Association for Computational Linguistics. Accessed: Jun. 18, 2022. [Online]. Available: http://nlp.stanford.edu/
R. Socher, C. Chiung, Y. Lin, A. Y. Ng, and C. D. Manning, Parsing Natural Scenes and Natural Language with Recursive Neural Net-works, 2011. Accessed: Jun. 18, 2022. [Online]. Available: www.socher.org.
Y. Zhang, H. Zhou, and Z. Li, Fast and accurate neural CRF constituency parsing, in IJCAI International Joint Conference on Artifi-cial Intelligence, 2020, vol. 2021-January, pp. 40464053. doi: 10.24963/ijcai.2020/560.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Distributed Representations of Words and Phrases and their Compositionality. Ac-cessed: Jun. 18, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 2013.
R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, Semi-Supervised Recursive Autoencoders for Predicting Senti-ment Distributions. Accessed: Jun. 18, 2022. [Online]. Available: www.socher.org.
R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning, Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. Accessed: Jun. 18, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2011/hash/3335881e06d4d23091389226225e17c7-Abstract.html
B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning, Max-Margin Parsing. Accessed: Jun. 18, 2022. [Online]. Available: https://aclanthology.org/W04-3201.pdf
N. D. Ratliff, J. Andrew Bagnell, and M. A. Zinkevic, Maximum margin planning, in ACM International Conference Proceeding Series, 2006, vol. 148, pp. 729736. doi: 10.1145/1143844.1143936.
M. Odonnell, RSTTool 2.4-A Markup Tool for Rhetorical Structure Theory. Accessed: Jun. 18, 2022. [Online]. Available: https://aclanthology.org/W00-1434.pdf