PEMETAAN RESPON SISWA SMP BERDASARKAN TAKSONOMI SOLO DALAM PENYELESAIAN MASALAH GENERALISASI POLA

Diesty Hayuhantika


DOI: https://doi.org/10.29100/jp2m.v2i2.210

Abstract


Penelitian ini bertujuan untuk mendeskripsikan respon siswa terhadap masalah generalisasi pola. Pemetaan respon siswa dilakukan dengan menggambarkan struktur respon siswa berdasarkan Taksonomi SOLO (Structure of Observed Learning Outcome). Pengumpulan data dilakukan dengan metode wawancara berbasis tugas terhadap subjek yaitu 10 siswa kelas VII. Respon siswa terhadap Tes Generalisasi Pola dianalisis dengan menggunakan teknik analisis perbandingan tetap. Hasil penelitian menunjukkan pemetaan respon siswa pada lima tingkatan Taksonomi SOLO, yaitu prestructural, unistructural, multistructural, relational, dan extended abstract. Peta respon yang dihasilkan mengungkap proses penyelesaian masalah yang berbeda-beda pada subjek masing-masing tingkat dalam hal hubungan antara informasi yang diberikan melalui permasalahan, konsep dan proses yang dilalui siswa ketika menyelesaikan masalah, dan respon yang dicapai.

Keywords


pemetaan respon, taksonomi SOLO, generalisasi pola

Full Text:

PDF

Article Metrics :

References


Billings, Esther M. H., Tiedt, T. L., dan Slater, L. H. 2008. Algebraic Thinking and Pictorial Growth Patterns. Teaching Children Mathematics, 14(5): 302–308.

Carraher, D. W., Martinez, M. V., dan Schliemann, A. D. 2008. Early Algebra and Mathematical Generalization. ZDM Mathematic Education, 40(1): 3–22.

Chick, Helen.1998. Cognition in the Formal Modes: Research Mathematics and the SOLO Taxonomy. Mathematics Education Research Journal, 10(2): 4–26.

Chua, B. L. 2009. Features of Generalising Task: Help or Hurdle to Expressing Generality? Australian Mathematics Teacher, 65(2): 18–24.

Chua, B. L., dan Hoyles, C. 2012. Seeing Through Students’ Eyes: The Best Help Strategy for Pattern Generalisation. Makalah disajikan pada 12th International Congress on Mathematical Education, Seoul, 8–15 Juli 2012. Dalam NIE Digital Repository, (Online), (https://repository.nie.edu.sg/handle/10497/11499 ), diakses 20 Mei 2015.

Herbert, Kristen dan Brown, Rebecca H. 1997. Pattern as Tools for Algrebaic Reasoning. Dalam Barbara Moses (Ed.). Algebraic Thinking, Grades K—12: Readings from NCTMs School-Based Journals and Other Publications (hal. 123–128), Reston VA: NCTM.

Lian, L. H. dan Yew, W. T. 2012. Assessing Algebraic Solving Ability: A Theoretical Framework. International Education Studies, 5(6): 177–188

Moleong, Lexy J. 2012. Metode Penelitian Kualitatif (Ed. Revisi). Bandung: ROSDA.

NCTM. 2000. Principles and Standards for School Mathematics. Reston VA: The NCTM Inc.

Papic, Marina M., Mulligan, Joanne T., dan Mitchelmore, Michael C. 2011. Assessing the Development of Preschoolers’ Mathematical Patterning. Journal For Research in Mathematics Education, 42(3) : 237–268.

Sanni, R. 2012. Selection and Implementation of Task: An Account of Teachers’ Task Practice. Research Journal in Organizational Psychology & Educational Studies, 1(2): 129–136.

Smith, M. S., Hillen, A. F., dan Catania, C. L. 2007. Using Pattern Task to Develop Mathematical Understandings and Set Classroom Norms. Mathematics Teaching in The Middle School, 13(1): 38–44.

Stump, Sheryl L. 2011. Patterns to Develop Algebraic Reasoning. Teaching Children Mathematics, 17(7): 410–418.

Watson, J. M., & Mulligan, J. 1990. Mapping Solutions to an Early Multiplication Word Problem. Mathematics Education Research Journal, 2(2): 28–44.