IMPLEMENTASI DAN TANTANGAN INTEGRASI SIMULASI KOMPUTER DALAM PERKULIAHAN FISIKA STATISTIK DI INSTITUT PENDIDIKAN SOE

Dens E.S.I Asbanu
Diana Rochintaniawati
Riandi Riandi
Parlindungan Sinaga


DOI: https://doi.org/10.29100/.v7i3.7583

Abstract


Penelitian ini menganalisis tantangan dan strategi dalam mengintegrasikan simulasi komputer ke dalam perkuliahan fisika statistik di daerah terpencil, dengan studi kasus di Pulau Timor. Penelitian ini menggunakan metode campuran dengan teknik analisis terhadap rencana pembelajaran semester (RPS), wawancara dengan dosen, observasi perkuliahan, dan survei persepsi mahasiswa. Hasil analisis RPS menunjukkan bahwa materi fisika statistik, seperti entropi, fungsi partisi, dan distribusi energi, belum terintegrasi dengan simulasi komputer. Tantangan utama yang dihadapi dosen dalam mengajar fisika statistik adalah terbatasnya akses ke simulasi komputer untuk menjelaskan konsep-konsep abstrak serta rendahnya kemampuan matematika mahasiswa. Wawancara dan survei terhadap mahasiswa mengungkapkan bahwa mereka mengalami kesulitan dalam memahami konsep abstrak dan persamaan kompleks. Baik dosen maupun mahasiswa mengakui bahwa simulasi komputer dapat memvisualisasikan konsep fisika secara efektif, namun penerapannya masih kurang optimal. Oleh karena itu, penelitian ini merekomendasikan pengayaan materi dengan aplikasi yang relevan, peningkatan akses terhadap simulasi, serta pengembangan pendekatan pembelajaran berbasis multi representasi (grafis, numerik, tabel, dan simulasi). Berdasarkan temuan ini, disarankan pengembangan strategi pedagogis dalam pembelajaran fisika statistik yang mengintegrasikan simulasi komputer menggunakan Excel, Python, dan Scilab untuk memvisualisasikan konsep-konsep abstrak. Implementasi strategi ini diharapkan dapat meningkatkan pemahaman konsep secara mendalam serta mendorong kreativitas dalam pemecahan masalah oleh mahasiswa.

Keywords


fisika statistik; simulasi komputer; multi representasi; pemahman konsep

Article Metrics :

References


Abdullah, K., Gharibi, A., & Arulappan, J. (2020). Repeated Simulation Experience on Self-Confidence , Critical Thinking , and Competence of Nurses and Nursing Students — An Integrative Review. https://doi.org/10.1177/2377960820927377

Abdulrahaman, M. D., Faruk, N., Oloyede, A. A., Surajudeen-bakinde, N. T., & Olawoyin, L. A. (2020). Heliyon Multimedia tools in the teaching and learning processes : A systematic review. Heliyon, 6(11), e05312. https://doi.org/10.1016/j.heliyon.2020.e05312

Bahri, Y., Kadmon, J., Pennington, J., Schoenholz, S. S., Sohl-dickstein, J., & Ganguli, S. (2020). Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics, 501–528.

Banda, H. J., & Nzabahimana, J. (2021). Effect of integrating physics education technology simulations on students’ conceptual understanding in physics: A review of literature. Physical Review Physics Education Research, 17(2), 23108. https://doi.org/10.1103/PhysRevPhysEducRes.17.023108

Becker, S., Klein, P., Gößling, A., & Kuhn, J. (2020). Using mobile devices to enhance inquiry-based learning processes ☆. Learning and Instruction, 69(June), 101350. https://doi.org/10.1016/j.learninstruc.2020.101350

Beltran, L. (2023). Quantum Bose–Einstein Statistics for Indistinguishable Concepts in Human Language. Foundations of Science, 28(1), 43–55. https://doi.org/10.1007/s10699-021-09794-1

Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. (2021). Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52(1), 235–251. https://doi.org/10.1111/bjet.13020

Challenor, J., & Ma, M. (2019). A Review of Augmented Reality Applications for History Education and Heritage Visualisation. Multimodal Technologies and Interaction. https://doi.org/10.3390/mti3020039

Chen, M. J., She, H. C., & Tsai, P. Y. (2024). The effects of online simulation-based collaborative problem-solving on students’ problem-solving, communication and collaboration attitudes. In Education and Information Technologies. Springer. https://doi.org/10.1007/s10639-024-12609-y

Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020). Simulation-Based Learning in Higher Education : A Meta-Analysis. Review of Educational Research, 90(4), 499–541. https://doi.org/10.3102/0034654320933544

Creswell, J. W. (2014). Research Design Qualitative, Quantitative, and Mixed Methods Approaches (Fourth Edi). Sage Publication.

Develaki, M. (2019). Methodology and Epistemology of Computer Simulations and Implications for Science Education. Journal of Science Education and Technology.

Engelhardt, L., Lopez del Puerto, M., & Chonacky, N. (2015). Simple and synergistic ways to understand the Boltzmann distribution function. American Journal of Physics, 83(9), 787–793. https://doi.org/10.1119/1.4923204

Farhan, S., Sharafee, M., Ismail, S., Bonilla-petriciolet, A., Ben, A., & Erto, A. (2018). Synthesis and characterization of a novel amphoteric adsorbent coating for anionic and cationic dyes adsorption : Experimental investigation and statistical physics modelling. Chemical Engineering Journal, 351(June), 221–229. https://doi.org/10.1016/j.cej.2018.06.092

Fernández, F. M. (2015). A simple way of approximating the canonical partition functions in statistical mechanics. European Journal of Physics, 36(5), 55026. https://doi.org/10.1088/0143-0807/36/5/055026

Furtlehner, C. (2020). Statistical physics methods for machine learning and traffic forecasting. HAl open science. https://inria.hal.science/tel-02917159v1/document

Jairo, J., & Andrés, J. (2024). The AI ‑ driven classroom : A review of 21st century curriculum trends. PROSPECTS, 0123456789. https://doi.org/10.1007/s11125-024-09704-w

Jameson, G., & Brüschweiler, R. (2020). Active Learning Approach for an Intuitive Understanding of the Boltzmann Distribution by Basic Computer Simulations. Journal of Chemical Education, 97(10), 3910–3913. https://doi.org/10.1021/acs.jchemed.0c00559

Jerath, K., Ray, A., Brennan, S., & Gayah, V. V. (2015). Dynamic Prediction of Vehicle Cluster Distribution in Mixed Traffic : A Statistical Mechanics-Inspired Method. IEE Transactions on Intelligent Transpotation System, 1–11.

Justice, P. (2020). Student understanding of Fermi energy, the Fermi-Dirac distribution and total electronic energy of a free electron gas. European Journal of Physics, 41(1). https://doi.org/10.1088/1361-6404/ab537c

Ke, F., & Xu, X. (2020). Virtual reality simulation-based learning of teaching with alternative perspectives taking. British Journal of Educational Technology, 0(0), 1–14. https://doi.org/10.1111/bjet.12936

Koerfer, E., & Gregorcic, B. (2024). Exploring student reasoning in statistical mechanics: Identifying challenges in problem-solving groups. Physical Review Physics Education Research, 20(1), 10105. https://doi.org/10.1103/PhysRevPhysEducRes.20.010105

Lamine, A. Ben. (2017). Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size. Journal of Physics and Chemistry of Solids. https://doi.org/10.1016/j.jpcs.2017.05.019

Müller, R. (2014). The Boltzmann factor: A simplified derivation. European Journal of Physics, 35(5). https://doi.org/10.1088/0143-0807/35/5/055002

Musil, F., Grisa, A., Bart, A. P., Ortner, C., & Ceriotti, M. (2021). Physics-Inspired Structural Representations for Molecules and Materials. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00021

Pang, X., Sellaoui, L., Franco, D., Dotto, G. L., Georgin, J., Bajahzar, A., Belmabrouk, H., Lamine, A. Ben, & Li, Z. (2019). Research Institute of Advanced Interdisciplinary , College of Life Sciences , Qingdao Laboratory of Quantum and Statistical Physics , LR18ES18 , Monastir University , Faculty of Chemical Engineering Department , Federal University of Santa Maria – UFSM , 1000 , of Physics , College of Science at Al Zulfi , Majmaah University , Saudi Arabia. Chemical Engineering Journal, 122101. https://doi.org/10.1016/j.cej.2019.122101

Rosenberg, J. M., & Lawson, M. A. (2019). education sciences An Investigation of Students ’ Use of a Computational Science Simulation in an Online High School Physics Class. Education Sciences, 1–19. https://doi.org/10.3390/educsci9010049

Sanjari, A., & Manouchehri, A. (2024). education sciences Interactive Learning : Unpacking the Influence of Computer Simulations on Students ’ Mathematical Modeling Processes.

Sharafee, M., Farhan, S., Sellaoui, L., Badawi, M., Bonilla-petriciolet, A., & Ismail, S. (2022). Performance and interactions of diclofenac adsorption using Alginate / Carbon-based Films : Experimental investigation and statistical physics modelling. Chemical Engineering Journal, 428(June 2021), 131929. https://doi.org/10.1016/j.cej.2021.131929

Sharma, S., & Ahluwalia, P. K. (2012). Diagnosing alternative conceptions of Fermi energy among undergraduate students. European Journal of Physics, 33(4), 883–895. https://doi.org/10.1088/0143-0807/33/4/883

Simanjuntak, M. P. (2021). Effectiveness of Problem-Based Learning Combined with Computer Simulation on Students ’ Problem-Solving and Creative Thinking Skills. 14(3), 519–534.

Smith, T. I., Mountcastle, D. B., & Thompson, J. R. (2013). Identifying student difficulties with conflicting ideas in statistical mechanics. AIP Conference Proceedings, 1513, 386–389. https://doi.org/10.1063/1.4789733

Smith, T. I., Mountcastle, D. B., & Thompson, J. R. (2015). Student understanding of the Boltzmann factor. Physical Review Special Topics - Physics Education Research, 11(2). https://doi.org/10.1103/PhysRevSTPER.11.020123

Sozbilir, M. (2003). Whats student’s understanding from entropy: A Review od selected literature. Journal of Baltic Science Education, 1, 21–27.

Tam, M. (2014). Outcomes-based approach to quality assessment and curriculum improvement in higher education. Qualty Assurance in Education, 22(2), 158–168. https://doi.org/10.1108/QAE-09-2011-0059

Thees, M., Kapp, S., Strzys, M. P., Beil, F., & Lukowicz, P. (2020). Computers in Human Behavior Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316

Tsivitanidou, O. E., Georgiou, Y., & Ioannou, A. (2021). A Learning Experience in Inquiry ‑ Based Physics with Immersive Virtual Reality : Student Perceptions and an Interaction Effect Between Conceptual Gains and Attitudinal Profiles. Journal of Science Education and Technology, 0123456789. https://doi.org/10.1007/s10956-021-09924-1

Wang, K. D., Maï, J., Tanja, C., & Bumbacher, E. (2023). A systematic review of empirical studies using log data from open-ended learning environments to measure science and engineering practices. British Journal of Educational Technology, March 2022, 192–221. https://doi.org/10.1111/bjet.13289

Wang, W., Xu, K., Niu, H., & Miao, X. (2023). Retracted : Emotion Recognition of Students Based on Facial. 2020. https://doi.org/10.1155/2020/4065207

Zhai, X., Nehm, R. H., & Urban-lurain, M. (2020). From substitution to redefinition : A framework of machine learning-based science assessment. Journal of Reseacrh in Science Teaching, July 2019. https://doi.org/10.1002/tea.21658