IMPLEMENTASI DAN TANTANGAN INTEGRASI SIMULASI KOMPUTER DALAM PERKULIAHAN FISIKA STATISTIK DI INSTITUT PENDIDIKAN SOE
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)Article Metrics :
References
Abdullah, K., Gharibi, A., & Arulappan, J. (2020). Repeated Simulation Experience on Self-Confidence , Critical Thinking , and Competence of Nurses and Nursing Students — An Integrative Review. https://doi.org/10.1177/2377960820927377
Abdulrahaman, M. D., Faruk, N., Oloyede, A. A., Surajudeen-bakinde, N. T., & Olawoyin, L. A. (2020). Heliyon Multimedia tools in the teaching and learning processes : A systematic review. Heliyon, 6(11), e05312. https://doi.org/10.1016/j.heliyon.2020.e05312
Bahri, Y., Kadmon, J., Pennington, J., Schoenholz, S. S., Sohl-dickstein, J., & Ganguli, S. (2020). Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics, 501–528.
Banda, H. J., & Nzabahimana, J. (2021). Effect of integrating physics education technology simulations on students’ conceptual understanding in physics: A review of literature. Physical Review Physics Education Research, 17(2), 23108. https://doi.org/10.1103/PhysRevPhysEducRes.17.023108
Becker, S., Klein, P., Gößling, A., & Kuhn, J. (2020). Using mobile devices to enhance inquiry-based learning processes ☆. Learning and Instruction, 69(June), 101350. https://doi.org/10.1016/j.learninstruc.2020.101350
Beltran, L. (2023). Quantum Bose–Einstein Statistics for Indistinguishable Concepts in Human Language. Foundations of Science, 28(1), 43–55. https://doi.org/10.1007/s10699-021-09794-1
Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. (2021). Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52(1), 235–251. https://doi.org/10.1111/bjet.13020
Challenor, J., & Ma, M. (2019). A Review of Augmented Reality Applications for History Education and Heritage Visualisation. Multimodal Technologies and Interaction. https://doi.org/10.3390/mti3020039
Chen, M. J., She, H. C., & Tsai, P. Y. (2024). The effects of online simulation-based collaborative problem-solving on students’ problem-solving, communication and collaboration attitudes. In Education and Information Technologies. Springer. https://doi.org/10.1007/s10639-024-12609-y
Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020). Simulation-Based Learning in Higher Education : A Meta-Analysis. Review of Educational Research, 90(4), 499–541. https://doi.org/10.3102/0034654320933544
Creswell, J. W. (2014). Research Design Qualitative, Quantitative, and Mixed Methods Approaches (Fourth Edi). Sage Publication.
Develaki, M. (2019). Methodology and Epistemology of Computer Simulations and Implications for Science Education. Journal of Science Education and Technology.
Engelhardt, L., Lopez del Puerto, M., & Chonacky, N. (2015). Simple and synergistic ways to understand the Boltzmann distribution function. American Journal of Physics, 83(9), 787–793. https://doi.org/10.1119/1.4923204
Farhan, S., Sharafee, M., Ismail, S., Bonilla-petriciolet, A., Ben, A., & Erto, A. (2018). Synthesis and characterization of a novel amphoteric adsorbent coating for anionic and cationic dyes adsorption : Experimental investigation and statistical physics modelling. Chemical Engineering Journal, 351(June), 221–229. https://doi.org/10.1016/j.cej.2018.06.092
Fernández, F. M. (2015). A simple way of approximating the canonical partition functions in statistical mechanics. European Journal of Physics, 36(5), 55026. https://doi.org/10.1088/0143-0807/36/5/055026
Furtlehner, C. (2020). Statistical physics methods for machine learning and traffic forecasting. HAl open science. https://inria.hal.science/tel-02917159v1/document
Jairo, J., & Andrés, J. (2024). The AI ‑ driven classroom : A review of 21st century curriculum trends. PROSPECTS, 0123456789. https://doi.org/10.1007/s11125-024-09704-w
Jameson, G., & Brüschweiler, R. (2020). Active Learning Approach for an Intuitive Understanding of the Boltzmann Distribution by Basic Computer Simulations. Journal of Chemical Education, 97(10), 3910–3913. https://doi.org/10.1021/acs.jchemed.0c00559
Jerath, K., Ray, A., Brennan, S., & Gayah, V. V. (2015). Dynamic Prediction of Vehicle Cluster Distribution in Mixed Traffic : A Statistical Mechanics-Inspired Method. IEE Transactions on Intelligent Transpotation System, 1–11.
Justice, P. (2020). Student understanding of Fermi energy, the Fermi-Dirac distribution and total electronic energy of a free electron gas. European Journal of Physics, 41(1). https://doi.org/10.1088/1361-6404/ab537c
Ke, F., & Xu, X. (2020). Virtual reality simulation-based learning of teaching with alternative perspectives taking. British Journal of Educational Technology, 0(0), 1–14. https://doi.org/10.1111/bjet.12936
Koerfer, E., & Gregorcic, B. (2024). Exploring student reasoning in statistical mechanics: Identifying challenges in problem-solving groups. Physical Review Physics Education Research, 20(1), 10105. https://doi.org/10.1103/PhysRevPhysEducRes.20.010105
Lamine, A. Ben. (2017). Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size. Journal of Physics and Chemistry of Solids. https://doi.org/10.1016/j.jpcs.2017.05.019
Müller, R. (2014). The Boltzmann factor: A simplified derivation. European Journal of Physics, 35(5). https://doi.org/10.1088/0143-0807/35/5/055002
Musil, F., Grisa, A., Bart, A. P., Ortner, C., & Ceriotti, M. (2021). Physics-Inspired Structural Representations for Molecules and Materials. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00021
Pang, X., Sellaoui, L., Franco, D., Dotto, G. L., Georgin, J., Bajahzar, A., Belmabrouk, H., Lamine, A. Ben, & Li, Z. (2019). Research Institute of Advanced Interdisciplinary , College of Life Sciences , Qingdao Laboratory of Quantum and Statistical Physics , LR18ES18 , Monastir University , Faculty of Chemical Engineering Department , Federal University of Santa Maria – UFSM , 1000 , of Physics , College of Science at Al Zulfi , Majmaah University , Saudi Arabia. Chemical Engineering Journal, 122101. https://doi.org/10.1016/j.cej.2019.122101
Rosenberg, J. M., & Lawson, M. A. (2019). education sciences An Investigation of Students ’ Use of a Computational Science Simulation in an Online High School Physics Class. Education Sciences, 1–19. https://doi.org/10.3390/educsci9010049
Sanjari, A., & Manouchehri, A. (2024). education sciences Interactive Learning : Unpacking the Influence of Computer Simulations on Students ’ Mathematical Modeling Processes.
Sharafee, M., Farhan, S., Sellaoui, L., Badawi, M., Bonilla-petriciolet, A., & Ismail, S. (2022). Performance and interactions of diclofenac adsorption using Alginate / Carbon-based Films : Experimental investigation and statistical physics modelling. Chemical Engineering Journal, 428(June 2021), 131929. https://doi.org/10.1016/j.cej.2021.131929
Sharma, S., & Ahluwalia, P. K. (2012). Diagnosing alternative conceptions of Fermi energy among undergraduate students. European Journal of Physics, 33(4), 883–895. https://doi.org/10.1088/0143-0807/33/4/883
Simanjuntak, M. P. (2021). Effectiveness of Problem-Based Learning Combined with Computer Simulation on Students ’ Problem-Solving and Creative Thinking Skills. 14(3), 519–534.
Smith, T. I., Mountcastle, D. B., & Thompson, J. R. (2013). Identifying student difficulties with conflicting ideas in statistical mechanics. AIP Conference Proceedings, 1513, 386–389. https://doi.org/10.1063/1.4789733
Smith, T. I., Mountcastle, D. B., & Thompson, J. R. (2015). Student understanding of the Boltzmann factor. Physical Review Special Topics - Physics Education Research, 11(2). https://doi.org/10.1103/PhysRevSTPER.11.020123
Sozbilir, M. (2003). Whats student’s understanding from entropy: A Review od selected literature. Journal of Baltic Science Education, 1, 21–27.
Tam, M. (2014). Outcomes-based approach to quality assessment and curriculum improvement in higher education. Qualty Assurance in Education, 22(2), 158–168. https://doi.org/10.1108/QAE-09-2011-0059
Thees, M., Kapp, S., Strzys, M. P., Beil, F., & Lukowicz, P. (2020). Computers in Human Behavior Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316
Tsivitanidou, O. E., Georgiou, Y., & Ioannou, A. (2021). A Learning Experience in Inquiry ‑ Based Physics with Immersive Virtual Reality : Student Perceptions and an Interaction Effect Between Conceptual Gains and Attitudinal Profiles. Journal of Science Education and Technology, 0123456789. https://doi.org/10.1007/s10956-021-09924-1
Wang, K. D., Maï, J., Tanja, C., & Bumbacher, E. (2023). A systematic review of empirical studies using log data from open-ended learning environments to measure science and engineering practices. British Journal of Educational Technology, March 2022, 192–221. https://doi.org/10.1111/bjet.13289
Wang, W., Xu, K., Niu, H., & Miao, X. (2023). Retracted : Emotion Recognition of Students Based on Facial. 2020. https://doi.org/10.1155/2020/4065207
Zhai, X., Nehm, R. H., & Urban-lurain, M. (2020). From substitution to redefinition : A framework of machine learning-based science assessment. Journal of Reseacrh in Science Teaching, July 2019. https://doi.org/10.1002/tea.21658