DEVELOPMENT OF A SOLAR THERMAL POWER GENERATOR USING WATER LENS-BASED THERMOELECTRIC TECHNOLOGY
Abstract
Keywords
Full Text:
PDFArticle Metrics :
References
Elsheikh, M., Shnawah, D., Sabri, M. F., Said, S. B., Hassan, M., Bashir, M. B., & Mohamad, M. (2014). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337-355. doi:https://doi.org/10.1016/ j.rser. 2013.10.027
Maslamani, T., Omer, A. I., & M. A, M. (2014). Development Of Solar Thermoelectric Generator. European Scientific Journal, 10(9), 123-134. Retrieved from https://eujournal. org/index.php/esj/article/view/3048
Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. The Science of the total environment, 822. doi:10.1016/ j.scitotenv.2022.153645
Ayachi, S., He, X., & Yoon, H. (2023). Solar Thermoelectricity for Power Generation. Adv. Energy Mater, 13(28). doi: https://doi.org/ 10.1002/aenm.202300937
Baskar, S., Maridurai, T., & Arivazhagan, R. (2022). Thermal management of solar thermoelectric power generation., 2473. Ariyalur, India. doi:https://doi. org/10.1063/5.0096456
Bateman, P. (1961). Thermoelectric power generation. Contemporary Physics, 2(3), 302-311. doi:https://doi.org/ 10.1080/00107516108202661
Bhukesh, S. K., & Kumar, A. (2023). Simulation, modeling and experimental performance investi gations of novel giant water lens solar thermoelectric generator. Energy Conversion and Management, 295. doi:https://doi.org/10.1016/j.enconman.2023.117656
Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181. doi:https://doi.org/ 10.1016/j.enconman.2017.02.070
Chen, W.-H., Wang, C.-C., Hung, C.-I., Yang, C.-C., & Juang, R.-C. (2014). Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy, 64, 287-297. doi:https://doi.org/ 10.1016/j.energy.2013.10.073
Cotfas, D., Enesca, I., & Cotfas, P. (2024). Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light. Renewable Energy, 221. doi:https:// doi.org/10.1016/j.renene.2023.119831
Huda, D., & Kumala, S. (2020). Identifikasi Termoelektrik Generator sebagai Pembangkit Tenaga Listrik. PROSIDING SEMINAR NASIONAL SAINS, 1, pp. 6-13.
Indrayana, I. W., Dharmawan, I. D., Kumara, I. S., & Setiawan, I. (2024). Rancang Bangun Pembangkit Listrik Thermoelektrik Panas Matahari Berbasis Data Logger. Jurnal Ilmiah Wahana Pendidikan, 10(7), 606-617. doi:https://doi.org/10.5281/zenodo.11107659
Lekbir, A., Meddad, M., Eddiai, A., & Benhadouga, S. (2019). Higher-efficiency for combined photovoltaic-thermoelectric solar power generation. International Journal of Green Energy, 16(5), 371-377. doi:10.1080/ 15435075.2019.1567515
Liu, M., Li, X., Li, L., Zhao, S., Zhu, J., Zhou, T., . . . Zou, C. (2024). Sustainable All-Day Thermoelectric Power Generation From the Hot Sun and Cold Universe. Nano Micro Small, 20(35). doi:https://doi.org/ 10.1002/smll.202403020
Maduabuchi, C., Ejenakevwe, K., & Mgbemene, C. (2021). Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator. Renewable Energy, 168, 1189-1206. doi:https://doi.org /10.1016/j.renene.2020.12.130
Pradana, M. A., & Widyartono, M. (2020). Prototipe Pembangkit LIstrik Termoelektrik Generator Menggunakan Penghantar Panas Aluminium, Kuningan Daan seng. JURNAL TEKNIK ELEKTRO, 9(2). doi: https://doi.org/10.26740/ jte.v9n2.p%25p
Rokhim, Endahwati, L., & Sutiyono, S. (2023). Pemanfaatan Energi panas menggunakan Termoelektrik Generator dengan Variasi Peltier. Jurnal Flywheel, 14(1), 19-23. doi:https://doi.org/10.36040/flywheel.v14i1.6522
Rowe, D. (1999). Thermoelectrics, an environmentally-friendly source of electrical power. Renewable Energy, 16(1-4), 1251-1256. doi:https://doi.org /10.1016/S0960-1481(98)00512-6
Umam, F., Budiarto, H., & Wahyuni, S. (2017). Perancangan Thermoelectric Generator (TEG) sebagai Sumber Energi Terbarukan. Jurnal Ilmiah REKAYASA, 10(2), 123-127. doi: https://doi.org/10.21107/rekayasa.v10i2.6345
Wang, J., Lu, L., Chen, J., & Jia, L. (2023). Parametric analysis and potential evaluation of thermoelectric generator driven by solar energy and radiative sky cooling. Solar Energy, 264. doi:https://doi.org/10.1016/j.solener.2023.112071
Xi, H., Luo, L., & Fraisse, G. (2007). Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 11(5), 923-936. doi:https ://doi.org/10.1016/j.rser.2005.06.008
Xia, Z., Zhang, Z., Meng, Z., & Yu, Z. (2020). A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. Journal of Quantitative Spectroscopy and Radiative Transfer, 251. doi:https://doi.org/10.1016/j.jqsrt.2020.107038
Xie, Y., Ji, Y., Jing, W., Lai, Q., Xie, B., & Wang, C. (2024). A high-performance all-day vertical thermoelectric generator based on a double-sided reflective structure. Case Studies in Thermal Engineering, 63. doi:https://doi.org/10.1016/j.csite.2024.105333
Yang, Z., Wang, F., Fu, Z., Dong, Y., Zou, H., Chen, X., . . . Zhang, S. (2024). Thermoelectric system investigation with the combination of solar concentration, greenhouse and radiative cooling for all-day power generation. Renewable Energy, 23. doi:https://doi.org/10.1016/j.renene.2024.120903
Zhu, N., Matsuura, T., Suzuki, R., & Tsuchiyav, T. (2014). Development of a Small Solar Power Generation System based on Thermoelectric Generator. Energy Procedia, 52, 651-658. doi:https://doi.org/10.1016/ j.egypro.2014.07.121