DEVELOPMENT OF A SOLAR THERMAL POWER GENERATOR USING WATER LENS-BASED THERMOELECTRIC TECHNOLOGY

Ketut Alit Adi Untara
Nurul Kami Sani
I Wayan Darmadi
Kamaluddin Kamaluddin


DOI: https://doi.org/10.29100/.v7i2.6977

Abstract


Solar thermal power generation using thermoelectric technology offers promising potential for renewable energy use in Palu, Indonesia, providing a clean and sustainable source of electricity for low-power electronic devices. This approach not only reduces greenhouse gas emissions but also supports sustainable regional development by offering an alternative to fossil fuels, thus strengthening long-term energy resilience. Additionally, utilizing renewable energy can foster local economic opportunities and decrease energy import costs. This study employs a thermoelectric generator (TEG) that converts heat focused through water lenses into electrical power via the Seebeck effect. The system’s performance depends on the temperature difference created between the heated and cooled sides of the thermoelectric module. Experimental results showed a voltage range of 0.1 V to 0.33 V, producing a current of about 0.001 A, with an output power of 1.0 × 10⁻⁴ W to 3.3 × 10⁻⁴ W. Though the current output supports low-power devices, further optimization is required to enhance efficiency. This research underscores the viability of water lens-based thermoelectric systems as an eco-friendly energy solution in solar-rich regions, presenting a potential pathway for sustainable energy generation.

Keywords


Development; Solar Thermal Power Generator, Thermoelectric Water Lens

Full Text:

PDF

Article Metrics :

References


Elsheikh, M., Shnawah, D., Sabri, M. F., Said, S. B., Hassan, M., Bashir, M. B., & Mohamad, M. (2014). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337-355. doi:https://doi.org/10.1016/ j.rser. 2013.10.027

Maslamani, T., Omer, A. I., & M. A, M. (2014). Development Of Solar Thermoelectric Generator. European Scientific Journal, 10(9), 123-134. Retrieved from https://eujournal. org/index.php/esj/article/view/3048

Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. The Science of the total environment, 822. doi:10.1016/ j.scitotenv.2022.153645

Ayachi, S., He, X., & Yoon, H. (2023). Solar Thermoelectricity for Power Generation. Adv. Energy Mater, 13(28). doi: https://doi.org/ 10.1002/aenm.202300937

Baskar, S., Maridurai, T., & Arivazhagan, R. (2022). Thermal management of solar thermoelectric power generation., 2473. Ariyalur, India. doi:https://doi. org/10.1063/5.0096456

Bateman, P. (1961). Thermoelectric power generation. Contemporary Physics, 2(3), 302-311. doi:https://doi.org/ 10.1080/00107516108202661

Bhukesh, S. K., & Kumar, A. (2023). Simulation, modeling and experimental performance investi gations of novel giant water lens solar thermoelectric generator. Energy Conversion and Management, 295. doi:https://doi.org/10.1016/j.enconman.2023.117656

Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181. doi:https://doi.org/ 10.1016/j.enconman.2017.02.070

Chen, W.-H., Wang, C.-C., Hung, C.-I., Yang, C.-C., & Juang, R.-C. (2014). Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy, 64, 287-297. doi:https://doi.org/ 10.1016/j.energy.2013.10.073

Cotfas, D., Enesca, I., & Cotfas, P. (2024). Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light. Renewable Energy, 221. doi:https:// doi.org/10.1016/j.renene.2023.119831

Huda, D., & Kumala, S. (2020). Identifikasi Termoelektrik Generator sebagai Pembangkit Tenaga Listrik. PROSIDING SEMINAR NASIONAL SAINS, 1, pp. 6-13.

Indrayana, I. W., Dharmawan, I. D., Kumara, I. S., & Setiawan, I. (2024). Rancang Bangun Pembangkit Listrik Thermoelektrik Panas Matahari Berbasis Data Logger. Jurnal Ilmiah Wahana Pendidikan, 10(7), 606-617. doi:https://doi.org/10.5281/zenodo.11107659

Lekbir, A., Meddad, M., Eddiai, A., & Benhadouga, S. (2019). Higher-efficiency for combined photovoltaic-thermoelectric solar power generation. International Journal of Green Energy, 16(5), 371-377. doi:10.1080/ 15435075.2019.1567515

Liu, M., Li, X., Li, L., Zhao, S., Zhu, J., Zhou, T., . . . Zou, C. (2024). Sustainable All-Day Thermoelectric Power Generation From the Hot Sun and Cold Universe. Nano Micro Small, 20(35). doi:https://doi.org/ 10.1002/smll.202403020

Maduabuchi, C., Ejenakevwe, K., & Mgbemene, C. (2021). Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator. Renewable Energy, 168, 1189-1206. doi:https://doi.org /10.1016/j.renene.2020.12.130

Pradana, M. A., & Widyartono, M. (2020). Prototipe Pembangkit LIstrik Termoelektrik Generator Menggunakan Penghantar Panas Aluminium, Kuningan Daan seng. JURNAL TEKNIK ELEKTRO, 9(2). doi: https://doi.org/10.26740/ jte.v9n2.p%25p

Rokhim, Endahwati, L., & Sutiyono, S. (2023). Pemanfaatan Energi panas menggunakan Termoelektrik Generator dengan Variasi Peltier. Jurnal Flywheel, 14(1), 19-23. doi:https://doi.org/10.36040/flywheel.v14i1.6522

Rowe, D. (1999). Thermoelectrics, an environmentally-friendly source of electrical power. Renewable Energy, 16(1-4), 1251-1256. doi:https://doi.org /10.1016/S0960-1481(98)00512-6

Umam, F., Budiarto, H., & Wahyuni, S. (2017). Perancangan Thermoelectric Generator (TEG) sebagai Sumber Energi Terbarukan. Jurnal Ilmiah REKAYASA, 10(2), 123-127. doi: https://doi.org/10.21107/rekayasa.v10i2.6345

Wang, J., Lu, L., Chen, J., & Jia, L. (2023). Parametric analysis and potential evaluation of thermoelectric generator driven by solar energy and radiative sky cooling. Solar Energy, 264. doi:https://doi.org/10.1016/j.solener.2023.112071

Xi, H., Luo, L., & Fraisse, G. (2007). Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 11(5), 923-936. doi:https ://doi.org/10.1016/j.rser.2005.06.008

Xia, Z., Zhang, Z., Meng, Z., & Yu, Z. (2020). A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. Journal of Quantitative Spectroscopy and Radiative Transfer, 251. doi:https://doi.org/10.1016/j.jqsrt.2020.107038

Xie, Y., Ji, Y., Jing, W., Lai, Q., Xie, B., & Wang, C. (2024). A high-performance all-day vertical thermoelectric generator based on a double-sided reflective structure. Case Studies in Thermal Engineering, 63. doi:https://doi.org/10.1016/j.csite.2024.105333

Yang, Z., Wang, F., Fu, Z., Dong, Y., Zou, H., Chen, X., . . . Zhang, S. (2024). Thermoelectric system investigation with the combination of solar concentration, greenhouse and radiative cooling for all-day power generation. Renewable Energy, 23. doi:https://doi.org/10.1016/j.renene.2024.120903

Zhu, N., Matsuura, T., Suzuki, R., & Tsuchiyav, T. (2014). Development of a Small Solar Power Generation System based on Thermoelectric Generator. Energy Procedia, 52, 651-658. doi:https://doi.org/10.1016/ j.egypro.2014.07.121