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Dolphin detection plays an important role in marine ecosystem moni-

toring, species conservation, and behavioral analysis. However, visual 

identification in underwater environments faces challenges such as 

light refraction, water turbidity, and dynamic sea conditions. This study 

proposes a deep learning-based dolphin detection approach by modify-

ing the YOLOv8 architecture to produce a lightweight yet accurate 

model. The modifications include reducing the number of channels in 

the backbone and neck, as well as simplifying the SPPF block, thereby 

reducing the model parameters from 3.01 million to 1.83 million and 

the computational complexity from 8.2 GFLOPs to 7.2 GFLOPs. A 

specialized dolphin dataset consisting of 5,493 labeled images, col-

lected from underwater and surface conditions, was developed to train 

and evaluate the model. Experimental results show that the proposed 

model achieves 67.1% mAP@50 and 45.8% mAP@50–95, outper-

forming YOLOv8-Nano and other lightweight YOLO variants. Addi-

tionally, the model demonstrates better runtime efficiency, with a la-

tency of 49.2 ms and 20.38 FPS, making it suitable for real-time imple-

mentation on resource-constrained devices. Overall, this research pre-

sents a more efficient and accurate dolphin detection solution, while 

also providing a specialized dataset that can support further research in 

the field of computer vision-based marine conservation. 

 

 

I. INTRODUCTION 

nderwater object detection plays an important role in marine science, supporting ecosystem monitoring, 

environmental exploration, and species conservation [1]. In the context of conservation, several dolphin 

species still have large populations. Common dolphins, in particular, are estimated to number more than 

six million individuals worldwide, reflecting the species' successful adaptation to various aquatic environments. 

A comprehensive study of marine mammals in the North Atlantic also emphasizes the importance of long-term 

monitoring and cross-regional population status assessments as the basis for sustainable conservation manage-

ment [2]. However, this situation starkly contrasts with the Irrawaddy dolphin population in Southeast Asia, 

which is experiencing a critical decline. A 2020 long-term monitoring report on the Mekong River estimated that 

only about 89 individuals remain (95% CI: 78–102), with an average annual mortality rate of 2.14% and a pop-

ulation decline rate of 2.09% per year since 2007 [3]. This data confirms the urgency of the need for an efficient 

monitoring approach. Advances in computer vision and artificial intelligence (AI) have significantly improved 

detection accuracy, enabling more effective object identification and tracking. However, developing models that 

can operate reliably in a variety of underwater conditions, from deep-sea ecosystems to coastal and river areas, 

remains a significant challenge, requiring algorithms to ensure consistent detection performance [4]. One appli-

cation of this technology is dolphin detection, to understand behavior, movement patterns, geographic distribu-

tion, and population dynamics. Underwater cameras and other visual monitoring tools enable direct observation 

in two main conditions, underwater and on the water surface. However, factors such as light refraction, water 
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turbidity, and unstable lighting can reduce image quality [5]. To overcome these challenges, computer vision 

systems must be trained on data sets that cover a variety of real-world environmental conditions. 

In addition, dolphin monitoring is also important for detecting changes in population, behavior, and migration 

patterns, which are important indicators for maintaining the balance of the marine ecosystem [6]. Conventional 

methods that rely on human observation have limitations in terms of time, area, and safety, making them ineffec-

tive for long-term monitoring. Therefore, computer vision-based automated monitoring systems offer a more 

efficient and sustainable approach [7]. Supported by a Convolutional Neural Network (CNN) architecture, this 

system is capable of detecting dolphins in real time, even in complex visual conditions in the marine environment, 

thereby providing accurate data to support conservation efforts. 

With advances in computer vision technology, object detection has become a key component in computer 

vision systems designed to identify and localize the presence of specific objects in images or videos. However, 

in underwater environments, object detection faces various challenges such as lighting conditions, water turbid-

ity, and complex and dynamic backgrounds [8]. To overcome these problems, deep learning-based approaches 

have emerged as a solution due to their ability to extract features from image data. 

The modern approach introduces Convolutional Neural Networks (CNN) as a feature extraction method that 

effectively distinguishes object features from the background [9]. Filter operations can recognize the character-

istics of objects using trained weights. During the learning process, the network automatically updates the kernel 

weights by minimizing prediction errors during training. This method effectively highlights important infor-

mation from objects, but requires significant computing power when using deep convolutional layers. Among 

CNN-based architectures, You Only Look Once (YOLO) is widely used due to its efficiency in real-time appli-

cations.  

Previous YOLO-based research has generally focused on detecting land objects or environments with stable 

lighting conditions, while its application in marine environments faces different challenges. Prior versions of the 

YOLO model, including the original YOLOv8, tend to have difficulty distinguishing between marine objects 

with similar morphologies, such as dolphins and other species with similar dorsal fin shapes. In addition, detec-

tion performance tends to decline when images are affected by water turbidity, light reflections, and limited 

contrast. This gap is the basis for developing the YOLOv8-nano architecture, aiming to improve the ability to 

discriminate between marine species while maintaining computational effectiveness for real-time monitoring in 

the field. 

The advantages of the CNN method prompted this study to implement a convolution-based architecture with 

a focus on efficiency. This study proposes a low-cost architecture that can be run on devices with limited re-

sources. Efficiency is achieved through simplification of the network structure, particularly by reducing the num-

ber of channels in each layer. This allows for fast and lightweight dolphin feature extraction without sacrificing 

accuracy. YOLOv8 has demonstrated strong object detection performance in low-light conditions, dense object 

distribution, and suboptimal image quality[10]. However, further efficiency improvements are still needed for 

real-world applications. The main contributions of this research are summarized as follows. 

 

1) An efficient deep learning model is proposed to develop a real-time dolphin detection system capable of 

rapid operation and deployment on low-power devices. The proposed architecture is a simplification of 

YOLOv8, which is focused on improving computational efficiency without sacrificing accuracy, thus ena-

bling applicability to ocean monitoring robotic systems. 

2) To support computer vision-based object detection systems, this study introduces a new dataset specifically 

designed for dolphin detection, annotated in a format compatible with YOLO. The dataset comprises images 

of dolphins captured under various conditions, both underwater and at the sea surface. Given the limited 

availability of public datasets for dolphin detection, this contribution is expected to serve as a valuable re-

source for advancing AI-based ocean monitoring systems. 

3) Extensive evaluation of the proposed lightweight model shows superior performance reaching state-of-the-

art performance in efficient object detection tasks, exceeding some mild variants of the YOLO family on the 

proposed dolphin dataset. This study also evaluates the model’s computational efficiency, highlighting its 

suitability for rapid dolphin localization on resource-constrained devices. 

II. RELATED WORKS 

Several studies have shown that the effectiveness of detection systems can be improved by expanding the 

object detection approach to various visual entities that impact marine life. For example, fishing nets, fishing 
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boats, plastic waste, and other fishing gear can be included as additional classes in detection [11], [12], [13]. The 

application of this system enables the identification of marine animals and potential threats in their vicinity, 

thereby providing richer contextual information to support conservation [14].  

Underwater object detection systems face significant challenges in the field of computer vision due to low 

visibility, poor lighting, and water turbidity, which often lead to detection errors [14], [16]. To address these 

issues, deep learning models such as Convolutional Neural Networks (CNNs) and You Only Look Once (YOLO) 

architectures have been widely used due to their ability to balance speed and accuracy [17]. However, these 

architectures are not always optimal in all underwater conditions, so various modifications have been proposed. 

For example, study [18] proposed YOLO-CTS by adding a Convolutional Block Attention Module (CBAM) and 

a Transformer module to YOLOv5s to improve feature extraction in complex environments. On the other hand, 

study [19] introduced YOLOX-U, an anchor-free detector optimized for small objects by considering light atten-

uation in color channels, outperforming YOLOv8-S in detecting sea cucumbers.  Although significant progress 

has been made in detecting marine animals such as fish [18], sharks [15], and turtles [20], research focusing on 

dolphin detection is still limited. Most studies focus on acoustic detection, such as dolphin voice recognition or 

whistle detection [21], so the application of visual object detection methods is still very limited and requires 

further research. 

Globally, the proposed architecture is inspired by YOLOv8 [10], which is designed to be lighter. The general 

structure of the detector architecture can be seen in Figure 1. This study modifies the nano version of YOLOv8 

by increasing data processing speed without compromising detection performance. The focus of this research is 

to improve model efficiency by optimizing the number of channels in the feature map during convolution oper-

ations, with the aim of improving the accuracy of dolphin location predictions. 

The implementation of dolphin detection systems plays an important role in supporting the conservation of 

protected marine species [21]. Computer vision and deep learning technologies have become popular methods 

for automatically recognizing marine objects in various types of data. One study applied this approach to record-

ings from unmanned aerial systems (UAS) to gain new insights into marine populations [22],[23]. Object detec-

tion models such as YOLO have demonstrated high performance in real-time detection tasks, even under chal-

lenging conditions such as low light and visual disturbances underwater [17],[15]. Since dolphins are difficult to 

observe directly due to their behavior and habitat, conventional monitoring requires high costs and field risks. 

Many dolphin species are currently classified as vulnerable, endangered, or data deficient in the International 

Union for Conservation of Nature (IUCN) Red List for Nature Conservation [24]. Therefore, global conservation 

efforts need to be supported by in-depth analysis enabled by modern detection technology. Adaptive and efficient 

automated monitoring systems are urgently needed, with the integration of AI and computer vision offering 

promising potential solutions. 

III. RESEARCH METHODOLOGY 

In this section, the proposed architecture is described in detail, focusing on modules designed to improve 

dolphin detection performance. In real-world conditions, dolphins are often found in the same habitats as other 

large marine animals such as sharks, orcas, and whale sharks. Their similarities lie in their streamlined and 

hydrodynamic body shapes, making them difficult to distinguish at a glance, especially in underwater recordings 

or images with limited lighting. However, dolphins have distinctive characteristics in their unique skin texture 

patterns, snout shapes, and swimming behaviors that set them apart from other species. Therefore, recognizing 

specific visual characteristics is key to ensuring the detection system can accurately identify dolphins in complex 

marine environments. 

A. Backbone 

This approach enables the resulting vision system to be implemented on low-cost devices, thereby supporting 

the development of underwater robots and marine observation systems for comprehensive monitoring of marine 

life. The system uses a backbone as the main extractor to capture essential features while reducing the dimension 

of the feature map, thereby reducing the computational cost. This process utilizes convolution layers that 

efficiently enhance feature representation. On the other hand, this design enhances multi-kernel weighting to 

accommodate richer information from the extracted features. This approach is a common characteristic of CNN 

architecture, where smaller spatial dimensions are typically integrated with a larger number of channels. 
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Figure. 1. Lightweight YOLOv8 Architecture for Dolphin Detection. 

 

In this basic network, the YOLOv8 architecture integrates a fast convolution module known as Convolutional 

Two Faster (C2f). This block diagram is shown in Figure 2. The C2f module is an optimized version of the C2 

module, which enhances computational efficiency while maintaining performance. This module also serves as a 

modification of the C3 module used in YOLOv5. In the initial stage, the input feature map is compressed using 

1×1 convolutions with a stride of 1 to adjust the number of channels. The output is then split into two branches, 

with one branch passed directly, while the second branch passes through a series of n Bottleneck blocks. The two 

branches are then concatenated, and the resulting feature map is further compressed using 1×1 convolutions to 

mix information from both paths. This design allows the C2f module to retain the information flow from each 

Bottleneck block, enriching the feature representation and improving detection performance, especially for small 

objects. This module is integrated into the backbone and neck parts of YOLOv8, where it optimizing feature 

maps across all layers of the network. This design improves information flow and preserves critical features, 

especially for small objects, resulting in richer and more diverse feature representations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure. 2. Proposed Conv, C2f, SPPF, and Bottleneck blocks. 
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In addition, spatial pyramid pooling-fast (SPPF) is applied after the last C2F module on the backbone to enrich 

the feature representation before entering the neck section. The block diagram of this process is illustrated in 

Figure 2. The process begins with a 1×1 convolution, which compresses the channels to adjust their number. The 

result is then processed through three consecutive 5×5 MaxPooling layers, where each layer preserves the spatial 

dimensions while gradually expanding the receptive field. This approach allows the model to capture both local 

and global information without significantly increasing the computational load. The output from each pooling 

stage is then concatenated and further processed using a 1×1 convolution to mix multi-scale information into the 

final feature map. This design enables the SPPF block to consistently extract features at various scales, thereby 

improving detection accuracy, especially for objects of varying sizes.  

The SPPF block is positioned at the terminal stage of the backbone, preceding the neck section, where the 

channel dimensionality is compressed relative to that in the C2f module of the backbone.  The channel reduction 

at the backbone-neck transition aims to reduce computational complexity and balance the feature load to be fused 

in the neck. 

In the spine and neck, the number of outlets in several main layers is reduced, as shown in Table 1. The first 

modification occurs in the backbone, where the number of channels in the last Conv layer is reduced from 256 

to 128, thereby reducing the parameters from 295,424 to 147,712, and in the next C2f layer, where the parameters 

are reduced from 460,288 to 115,456. Next, in the SPPF module, the number of channels was reduced by half 

from 256 to 64, which significantly reduced the parameters from 164,608 to 24,832. This reduction is important 

because the SPPF module transfers features to the neck section, and reducing the channels helps balance the 

feature load. In the neck section, the Upsample stage adjusts the number of channels to the previous output. 

Meanwhile, the Concat layer, which previously produced 384 channels, is reduced to 192, and the final C2f layer 

in the neck, which originally operated with 256 channels, is reduced to 128, with parameters reduced from 

493,056 to 123,648. Overall, this channel reduction strategy resulted in a total of 3,011,043 parameters in the 

original model being reduced to 1,837,283 in the modified model, while also reducing computational complexity 

from 8.2 GFLOPs to 7.2 GFLOPs, resulting in a lighter and more efficient architecture.  

 
TABLE I.  

CONFIGURATIONS YOLOV8 ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the backbone and neck sections, the number of output channels in several main layers was reduced, as shown 

in Table 1. The first modification occurs in the backbone, where the number of channels in the last Conv layer is 

reduced from 256 to 128, thereby reducing the parameters from 295,424 to 147,712, and in the next C2f layer, 

where the parameters are reduced from 460,288 to 115,456. Next, in the SPPF module, the number of channels 

was reduced by half from 256 to 64, which significantly reduced the parameters from 164,608 to 24,832. This 

Original Modifikasi 

Layer Output Shape Parameter Layer Output Shape Parameter 

Input 640, 640, 3 0 Input 640, 640, 3 0 

Conv 320, 320, 16 464 Conv 320, 320, 16 464 

Conv 160, 160, 32 4672 Conv 160, 160, 32 4672 

C2f 160, 160, 32 7360 C2f 160, 160, 32 7360 

Conv 80, 80, 64 18560 Conv 80, 80, 64 18560 

C2f 80, 80, 64 49664 C2f 80, 80, 64 49664 

Conv 40, 40, 128 73984 Conv 40, 40, 128 73984 

C2f 40, 40, 128 197632 C2f 40, 40, 128 197632 

Conv 20, 20, 256 295424 Conv 20, 20, 128 147712 

C2f 20, 20, 256 460288 C2f 20, 20, 128 115456 

SPPF 20, 20, 256 164608 SPPF 20, 20, 64 24832 

Upsample 40, 40, 256 0 Upsample 40, 40, 64 0 

Concat 40, 40, 384 0 Concat 40, 40, 192 0 

C2f 40, 40, 128 148224 C2f 40, 40, 128 123648 

Upsample 80, 80, 128 0 Upsample 80, 80, 128 0 

Concat 80, 80, 192 0 Concat 80, 80, 192 0 

C2f 80, 80, 64 37248 C2f 80, 80, 64 37248 

Conv 40, 40, 64 36992 Conv 40, 40, 64 36992 

Concat 40, 40, 192 0 Concat 40, 40, 192 0 

C2f 40, 40, 128 123648 C2f 40, 40, 128 123648 

Conv 20, 20, 128 147712 Conv 20, 20, 128 147712 

Concat 20, 20, 384 0 Concat 20, 20, 192 0 

C2f 20, 20, 256 493056 C2f 20, 20, 128 123648 

Detect 128 751507 Detect 128 604051 

Total Params : 3, 011, 043 

Total GFLOPs : 8.2 

Total Params : 1, 837, 283 

Total GFLOPs : 7.2 
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reduction is important because the SPPF module transfers features to the neck section, and reducing the channels 

helps balance the feature load. In the neck section, the Upsample stage adjusts the number of channels to the 

previous output. Meanwhile, the Concat layer, which previously produced 384 channels, is reduced to 192, and 

the final C2f layer in the neck, which originally operated with 256 channels, is reduced to 128, with parameters 

reduced from 493,056 to 123,648. Overall, this channel reduction strategy resulted in a total of 3,011,043 param-

eters in the original model being reduced to 1,837,283 in the modified model, while also reducing computational 

complexity from 8.2 GFLOPs to 7.2 GFLOPs, resulting in a lighter and more efficient architecture.  

Although a large number of channels can capture richer feature representations, not all extracted information 

is discriminative, some contains redundant information that actually increases computational costs. Reduced the 

number of channels in the backbone encourages the network to focus on extracting truly relevant features, result-

ing in more concise and efficient representations. This is particularly important because the neck acts as a multi-

scale feature aggregator, when the number of channels is too high, information imbalance can hinder effective 

cross-scale aggregation. The proposed channel reduction strategy not only improves computational efficiency 

but also contributes to improved detection performance. 

B. Neck 

 In YOLOv8, the Neck network determines the quality of features for object detection by integrating multi-

level features extracted by the backbone network. Feature fusion enhances connections through up-sampling and 

down-sampling approaches to equalize feature map dimensions, thereby strengthening the connections between 

elements at each convolution stage. This module uses an optimized version of the Path Aggregation Network 

(PANet), which has been improved to enhance information flow between different feature levels. YOLOv8 

implements a path aggregation network (PAN) that generates three feature levels using a bottom-up path 

aggregation strategy. It uses a C2F extractor to filter aggregated information. The process begins by taking 

features from several backbone stages, performing up-sampling and concatenation with resolution features 

through skip connections, followed by processing using an efficient C2f block. These features are then 

downsampled to combine information from different paths, processed again with C2f, and the results are passed 

to the Head for final prediction. The neck in YOLOv8 is lighter than previous generations because the C3 block 

is replaced with C2f, thereby improving inference speed without sacrificing accuracy. 

C. Detection Layer and Loss 

In YOLOv8, the detection layer generates predictions for bounding boxes and object classes. This work places 

the detection layer at the end of the network. The head network operates on several feature map scales, namely 

80×80, 40×40, and 20×20. This architecture uses three detection layers with different assignments: large feature 

maps are used to detect small objects, small feature maps focus on large objects, and medium feature maps handle 

medium-sized objects. Each detection layer consists of two branch blocks formed by two 3×3 convolutional 

layers followed by one 1×1 convolutional layer, applied sequentially.  For each scale, there are two branches: a 

regression branch that predicts the bounding box coordinates (x, y, w, h) and a classification branch that produces 

the probability of the detected object's class. This multi-scale approach enables YOLOv8 to detect objects of 

varying sizes more effectively. 

In addition, the loss function in YOLOv8 consists of three main components, namely Binary Cross-Entropy 

(BCE) Loss, Distribution Focal Loss (DFL), and Complete IoU (CIoU) Loss. BCE Loss is used to measure class 

probability prediction errors. DFL is applied to bounding box regression by modeling the distribution of object 

boundary coordinates, thereby improving edge localization precision. Meanwhile, CIoU Loss evaluates the qual-

ity of predicted bounding boxes in regression tasks by considering overlap, distance, and aspect ratio. The inte-

gration of these three loss function components enables YOLOv8 to maintain a balance between detection accu-

racy and classification performance, ensuring the model's performance remains optimal across objects of varying 

scales. 

IV. CONFIGURATION TRAINING AND TESTING 

In this experiment, the training phase used the Kaggle platform, which provides an accessible and efficient 

environment for deep learning experiments. Training was performed on a Kaggle P100 GPU, which offers sig-

nificant computing power to support complex model training. It was proposed to train for 300 epochs, which was 

identified as the optimal configuration based on the experimental results. Additionally, both training and evalu-

ation used an input resolution of 640 × 640 pixels, consistent with the default YOLO settings. To optimize the 
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learning process on large datasets, Stochastic Gradient Descent (SGD) was used with a learning rate of 0.01 and 

a batch size of 32 to ensure stable convergence. During inference, model testing and evaluation were conducted 

on a local device using a CPU configuration. This approach was used to evaluate how well the model could be 

applied in a real-world implementation environment with limited computational resources. 

V. PROPOSED DATASET 

This dolphin dataset was specifically developed to detect dolphins in aquatic environments, as illustrated in 

Figure 3. The dataset consists of above-water and underwater images, with varying lighting conditions, ocean 

backgrounds, and detection challenges such as water reflections and dynamic movements. This dataset is divided 

into three non-overlapping subsets, namely training, validation, and testing, consisting of a total of 5,493 images. 

The dataset was constructed by extracting frames from field videos and previous research sources [25]. The 

data initially collected was not annotated in a format compatible with the YOLO algorithm, so a re-annotation 

process was necessary to standardize it. The extracted images were carefully selected based on visual quality, 

object clarity, and water condition diversity. 

This selection process ensures that the dataset provides a comprehensive representation of real-world scenarios, 

including variations in dolphin poses, lighting conditions, and movement dynamics within their natural habitat. 

The annotation was performed using the Boobs–YOLO Bounding Box Annotation Tool, with each image labeled 

using two primary attributes: class and bounding box. The class attribute specifies the object category, while the 

bounding box defines the object’s location by enclosing its boundaries within a rectangle. The annotation process 

follows the YOLO format  [class, x center ,y center, width, height], enabling the dataset to be directly utilized for 

training object detection models. During annotation, two key principles were strictly followed [26]. First is con-

sistency; class definitions and bounding box placements must be consistent. Second is completeness and accurac, 

all object instances must be labeled comprehensively and accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 3.  Dolphin Dataset With Samples From Above and Below the Water Surface 

 

Overall, this dataset consists of 5,493 images containing approximately 4,900 identified and labeled dolphin 

instances. Each instance represents the presence of an individual dolphin in an image, either alone or in a group. 

These instances vary in terms of visual conditions, including dolphins visible above the water surface, partially 

visible dolphins (e.g., fins or tails), and dolphins fully submerged underwater. Additionally, some instances depict 

dolphins in groups, which poses additional challenges in the detection process due to object overlap. This diver-

sity provides a more realistic representation of dolphin behavior dynamics in their natural habitat and enriches 

visual feature variation, thereby enhancing the potential for object detection model generalization. 
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In addition, the distribution of the dataset shows that all images were obtained during daylight hours, as the 

dataset was collected from internet sources with no record of pictures taken at night. Regarding water clarity, 333 

images were taken in murky water, while the remaining samples correspond to clear water conditions. Depth 

values cannot be explicitly defined because the dataset was compiled exclusively from online sources, and no 

metadata is available regarding the vertical position or depth at which the images were obtained. 

The dolphin dataset is divided into three main parts: 75% for training, 10% for validation, and 15% for testing, 

consisting of 4,122, 549, and 822 images, respectively. The training part is completely separate from the valida-

tion and testing parts, while the validation and testing parts are designed to include diverse and interrelated im-

ages, which collectively represent a variety of conditions. Data augmentation is applied exclusively to the training 

set, while the validation and testing sets remain unchanged to ensure objective evaluation. This division strategy 

produces a representative and balanced dataset, supporting effective model training and reliable performance 

assessment. 

VI. RESULTS AND DISCUSSION 

In this section, the performance of the proposed model is evaluated on a dolphin dataset and compared with 

lightweight YOLO-based object detection methods. The analysis focuses on two main aspects: Dataset Evalua-

tion, which assesses detection accuracy and robustness in real underwater conditions, and Execution Time Effi-

ciency, which analyzes computational cost and model suitability for real-time deployment. This evaluation high-

lights the effectiveness and practicality of the proposed architecture in addressing the challenges of underwater 

object detection. 

A. Evaluation on Dataset 

The proposed model was evaluated on a dolphin dataset covering various conditions, including variations in 

lighting, water turbidity, and dolphin movement. Detection accuracy was measured using standard evaluation 

metrics, namely average precision at an IoU threshold of 0.5 (mAP@50) and average IoU from 0.5 to 0.95 

(mAP@50:95). This approach was compared to efficient detectors such as the lightweight YOLO family: 

YOLOv3-Tiny, YOLOv5-Nano, YOLOv6-Nano, YOLOv8-Nano, YOLOv9-Tiny, YOLOv10-Nano, 

YOLOv11-Nano, YOLOv12-Nano, and YOLOv12-Nano Turbo. As shown in Table 2, the YOLOv8-Nano model 

achieves a mAP@50 of 65.4% and a mAP@50:95 of 44.4%, outperforming YOLOv5-Nano (65.3% and 44.3%) 

and YOLOv3-Tiny (61.3% and 38.8%). Furthermore, the proposed modification to YOLOv8, namely 

YOLOv8+Best Channel, shows a significant improvement, with mAP@50 of 67.1% and mAP@50–95 of 45.8%. 

 
TABLE II.  

PERFORMANCE COMPARISON 

 

 

                          

       

 

 

 

 

 

 

 

 

 

These results are higher than those of YOLOv8-Nano. This improvement is mainly due to the channel reduction 

strategy applied to the backbone and neck, as well as to the SPPF block, which produces a more balanced feature 

distribution for multi-scale fusion. Thus, this model is not only lighter but also more accurate in detecting dol-

phins in real-time applications. When compared to YOLOv10-Nano, which achieved the highest mAP@50 of 

69.6%, the proposed model shows lower performance in terms of mAP@50:95 (39.9%), indicating less consistent 

bounding box localization at stricter IoU thresholds. Other models, such as YOLOv11-Nano (mAP@50: 65.0%, 

mAP@50:95: 43.1%) and YOLOv12-Nano (mAP@50: 60.8%, mAP@50:95: 41.9%), have lower performance 

Model GFLOPS Parameter mAP 50% mAP 50-95% 

YOLOv12-Nano Turbo 6.0 2.51 61.3 41.6 

YOLOv12-Nano 6.5 2.56 60.8 41.9 

YOLO11-Nano 6.4 2.59 65.0 43.1 

YOLOv10-Nano 8.4 2.70 59.6 39.9 

YOLOv9-Tiny 7.8 2.00 61.2 41.7 

YOLOv8-Nano 8.2 3.01 65.4 44.4 

YOLOv8+Best Channel 7.2 1.83 67.1 45.8 

YOLOv6-Nano 11.9 4.23 61.5 40.9 

YOLOv5-Nano 7.2 2.50 65.3 44.3 

YOLOv3-Tiny 19.0 12.1 61.3 38.8 
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than YOLOv8+Best Channel. This shows that simple yet effective modifications to the channel structure can 

provide an optimal balance between accuracy and computational efficiency. In fact, compared to YOLOv12 

Nano-Turbo, which only requires 6.0 GFLOPs, YOLOv8+Best Channel remains superior in accuracy with a 

+5.8% increase in mAP@50 and a +3.7% increase in mAP@50:95, despite slightly higher computational costs. 

Overall, these quantitative results show that the channel reduction approach applied to YOLOv8 improves the 

model's generalization ability, reduces information redundancy, and produces an efficient yet accurate detector 

for real-time dolphin detection applications. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. Dolphin detection results. The yellow box shows the predicted bounding box and confidence score. 

 

The detection results can be seen in Figure 4. To further evaluate the dolphin detection performance, we ana-

lyzed the bounding box predictions on a test dataset that was completely independent from the training data. In 

some examples, dolphins were clearly detected even though only part of their bodies were visible above the water 

surface, or when the objects were at depths with low visibility. These results show that the model is capable of 

accurately recognizing the location of dolphins. Although the presence of multiple individuals in a single frame 

adds complexity to the detection process, the proposed system consistently distinguishes dolphins from the back-

ground at varying scales and positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 5. Detection Error Analysis 

 

Additionally, error analysis to identify model limitations, as illustrated in Figure 5. In some cases, the model 

had difficulty detecting dolphins that appeared partially, appeared in large groups, or were near schools of fish, 

which often resulted in false negatives, occlusions, or overlapping bounding boxes. When dolphins were near 

schools of fish, the similarity in visual patterns and viewing distance frequently caused the system to fail to 

distinguish the target, resulting in missed detections. False positives were additionally detected, where the model 
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incorrectly predicted the presence of dolphins in empty areas due to light reflections or water patterns resembling 

body shapes. These findings confirm that although the modified architecture improves overall precision, chal-

lenges in complex underwater conditions remain a limitation that needs to be addressed in future research. 

To overcome these limitations, the proposed architecture is designed as a lightweight model with integrated 

attention modules, allowing the system to focus more effectively on discriminative features even in complex 

conditions. Although the network remains relatively lightweight, the synergy between efficient feature extractors 

and the potential of attention modules enables more prominent and selective information processing. These re-

sults demonstrate that accurate dolphin detection can still be achieved in real underwater environments, even 

when image quality is affected by optical disturbances, while also highlighting opportunities for further improve-

ment through exploration of attention mechanisms. 

B. Runtime Efficiency 

Runtime efficiency is a critical factor in assessing the practical feasibility of object detection models, especially 

for real-time applications on resource-constrained devices. This metric reflects the balance between computa-

tional cost and inference speed, which is typically measured in GFLOPs, latency, and frames per second (FPS). 

As shown in Table 3, the proposed YOLOv8n+BestChannel model shows a significant improvement over 

YOLOv8n.  
 

Table III.   

LATENCY AND THROUGHPUT OF YOLOV8N  

 

 
 

With a lower computational complexity of 7.2 GFLOPs compared to 8.2 GFLOPs in YOLOv8n, this model 

achieves lower latency of 49.2 ms compared to 55.9 ms and higher speed of 20.38 FPS compared to 17.92 FPS. 

These results show that the modifications made to YOLOv8n+BestChannel in channel adjustment not only im-

prove detection accuracy but also optimize processing speed, making it more suitable for real-time applications 

while maintaining computational efficiency. 

Architecturally, the increase in FPS accompanied by a decrease in GFLOPs and latency in 

YOLOv8n+BestChannel compared to the original YOLOv8n model can be explained by reducing the number of 

channels in the backbone and neck to improve computational efficiency. This process reduces the number of 

floating-point operations (GFLOPS), thereby reducing the computational load without eliminating essential fea-

ture representations. By minimizing redundancy in feature information, the data flow during inference becomes 

more efficient and faster with latency decreasing from 55.9 ms to 49.2 ms. The system processes more frames 

per second, with FPS increasing from 17.92 to 20.38. These results show that the modifications made to 

YOLOv8n+BestChannel in channel adjustment not only improve detection accuracy but also optimize processing 

speed, making this modified model more efficient for real-time deployment on devices with limited computing 

power resources. 

VII. CONCLUSION 

This study introduces a lightweight real-time detector for identifying dolphins in both underwater and surface 

environments. Dolphin habitat conservation encourages the use of low-cost underwater devices to visually mon-

itor behavior. This requires an automatic vision system that can detect dolphins. The modified 

YOLOv8n+BestChannel architecture achieves this by reducing the number of channels in the backbone and neck. 

It also simplifies the SPPF block before the neck stage. As a result, the number of parameters is lowered from 

3.01 million to 1.83 million, and computational complexity decreases from 8.2 GFLOPs to 7.2 GFLOPs. Exper-

imental results show that the proposed model achieves a performance improvement of 67.1% mAP@50 and 

45.8% mAP@50–95. It outperforms YOLOv8-Nano and other lightweight YOLO variants. Additionally, the 

model demonstrates better runtime efficiency, with a latency of 49.2 ms and a throughput of 20.38 FPS. This 

makes it more suitable for real-time applications on devices with limited resources. 

Overall, this simple yet effective channel reduce strategy improves detection accuracy while reducing compu-

tational costs. This study not only proposes an efficient architecture for dolphin detection, but also introduces a 

new dolphin-specific dataset that can support further research and development. Going forward, future research 

can focus on integrating attention mechanisms to further improve model generalization in more complex under-

water visual conditions. 

Model GFLOPS Latency/ms FPS 

YOLOv8n 8.2 55.9 17.92 

YOLOv8+Best Channel 7.2 49.2 20.38 
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