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Coconut milk adulteration is an important issue because it can reduce 
food quality and endanger consumers. This study aims to develop a rapid 
and accurate detection method for coconut milk adulteration using a com-
bination of FTIR spectroscopy technology and the XGBoost machine 
learning algorithm optimized with the Cuckoo Search Algorithm (CSA). 
FTIR spectral data from traditional and instant coconut milk samples 
were analyzed using Standard Normal Variate (SNV) and Savitzky-Go-
lay (SG) preprocessing to reduce noise and clarify spectral features. The 
XGBoost model was then optimized through CSA with hyperparameter 
tuning. The results showed that the combination of SNV+SG prepro-
cessing increased the model accuracy by 84.44%, with a precision of 
92.73% and an F1-score of 79.94%. In addition, CSA optimization pro-
vided a 19.7% increase in accuracy compared to the model without tun-
ing. These findings prove the effectiveness of the CSA-XGBoost ap-
proach in analyzing high-dimensional spectral data and is a potential so-
lution in efficiently detecting the authenticity of coconut milk. In conclu-
sion, this approach has the potential to be widely applied to test the au-
thenticity of other food products quickly, non-destructively and accu-
rately. 

   
. 

I. INTRODUCTION 
In the world of food science, Fourier Transform Infrared (FTIR) spectroscopy has developed into one of the 

reliable analytical tools due to its ability to provide chemical information quickly and accurately on various 
types of samples [1]. This technology allows the detection of chemical compound profiles through the infrared 

spectrum resulting from the interaction between light waves and molecular bonds in a material. One of the 
important applications of FTIR is in the analysis of coconut milk, where this technique has been used to detect 
adulteration, measure fat content, and evaluate other quality parameters [2]. 

The economic and health urgency of coconut milk adulteration is particularly significant in Indonesia, where 
coconut milk is a staple ingredient in many traditional dishes. Adulteration with cheaper substitutes (e.g., synthetic 
thickeners or lower-quality oils) not only deceives consumers but also poses health risks, including allergies and 
nutritional deficiencies. Globally, food fraud in plant-based dairy alternatives has raised concerns, with economic 
losses estimated at billions of dollars annually due to counterfeit products [3, 4, 5]. 

However, FTIR spectral data is very high-dimensional and prone to noise, multicollinearity, and non-linear 
effects between features. These challenges make conventional analysis methods less effective in interpreting data 
with high precision [6]. Therefore, the use of advanced machine learning approaches is very relevant, especially to 
maximize hidden information in the spectrum [7]. 

One of the prominent algorithms in spectral data processing is Extreme Gradient Boosting (XGBoost). This 
algorithm has been widely recognized for its ability to handle high-dimensional datasets and detect complex 
nonlinear relationships between features [8]. While other algorithms like Random Forest (RF) and Support Vector 
Machines (SVM) are commonly used for spectral analysis, XGBoost offers distinct advantages, including superior 
handling of imbalanced datasets, built-in regularization to prevent overfitting, and faster computational 
performance—critical for high-dimensional FTIR data [9, 10]. Based on the gradient boosting framework, 
XGBoost exhibits high computational efficiency and superior predictive accuracy, making it very suitable for 
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application in spectral analysis such as FTIR [11]. 
However, to obtain optimal performance from the XGBoost model, an effective hyperparameter tuning process 

is required. Traditional techniques such as grid search, although systematic, tend to be inefficient in large and high-
dimensional search spaces because they require many model evaluations [12]. In this context, the Cuckoo Search 
Algorithm (CSA) comes as a more efficient alternative solution. 

CSA is a metaheuristic optimization method inspired by the parasitic behavior of cuckoo eggs, and is known to 
have advantages in performing global searches and resistance to local optima traps [13, 14]. CSA has been widely 
used in various complex optimization problems, including in hyperparameter tuning for machine learning models, 
with promising results in improving model performance [15, 16]. Recent studies have demonstrated CSA’s 
effectiveness in optimizing machine learning models for spectral data, outperforming conventional methods like 
Particle Swarm Optimization (PSO) in convergence speed and avoiding local optima. Its bio-inspired stochastic 
search mechanism is particularly suited for the non-convex parameter spaces typical of FTIR datasets [17, 18]. 

Previous studies have shown the success of implementing XGBoost in modeling spectral data, for example in 
predicting milk protein content with mid-infrared spectroscopy [19]. Common challenges in FTIR data such as 
multicollinearity, noise, and high feature dimensions require effective data pre-processing stages, such as Standard 
Normal Variate (SNV) and Savitzky-Golay (SG) smoothing to reduce the effects of noise and different scales [20, 
21]. 

Despite previous work combining FTIR and classical machine learning models, the integration of FTIR, 
XGBoost, and CSA for coconut milk authentication has not been thoroughly investigated. Most existing studies 
focus on dairy or other plant-based milks, leaving coconut milk—a culturally and economically important product 
in Southeast Asia—understudied. This constitutes a clear research gap that this study aims to address [22, 23]. 

Based on this background, this study aims to detect the authenticity of coconut milk, especially in distinguishing 
coconut milk from traditional markets and instant coconut milk, using a combination of FTIR spectroscopy and the 
XGBoost algorithm optimized with CSA [24]. This study not only seeks to provide an accurate and efficient 
detection method, but also expands the understanding of the differences in chemical composition between natural 
and instant coconut milk products which are often the object of counterfeiting in the market [25, 26]. 

By integrating the predictive capabilities of XGBoost and the optimization efficiency of CSA, this approach has 
the potential to become a new standard in spectral data analysis for food authentication applications, especially in 
detecting adulteration practices that are detrimental to consumers and the food industry [27, 28, 29, 30]. 

II. RESEARCH METHODS 
A. Data 

This study employed FTIR (Fourier Transform Infrared) spectroscopy data obtained from coconut milk samples, 
extending the work previously published in "Application of FTIR Spectroscopy for Rapid and Non-Destructive 
Analysis of Adulteration in Coconut Milk" [31]. The dataset used in this research is publicly accessible through the 
National Center for Biotechnology Information (NCBI) repository at 
https://pmc.ncbi.nlm.nih.gov/articles/PMC8111090/#ad93. The FTIR spectral dataset consists of absorbance 
values measured over the near-infrared wavelength range of 2500–4000 nm, capturing important chemical 
signatures indicative of molecular structures in the samples. Notably, the traditional market coconut milk samples 
demonstrated three dominant absorbance peaks located around 2985–3000 nm, 3418–3420 nm, and 3449–3504 
nm, which are associated with typical lipid and moisture content variations. In contrast, the instant coconut milk 
samples exhibited characteristic absorbance peaks at slightly shifted intervals—namely 2998–3017 nm, 3382–3420 
nm, and 3449–3504 nm—reflecting differences in formulation, processing methods, and possible adulteration 
signatures [16].These spectral distinctions provide a strong basis for discriminative analysis and serve as the 
foundation for training machine learning models aimed at detecting adulteration and classifying coconut milk 
authenticity. 

TABLE I 
VARIABEL  

Variabel Description 

Y 0: Coconut milk from traditional market 
X_(1-729) Wavelength (2500- 4000 nm) 
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These methods address spectral variations and noise while preserving chemical information [32]. The 

dataset was partitioned into training (80%) and test (20%) sets using stratified sampling to maintain class 
distribution [33]. 

B. Analytical Procedure 
 

The data analysis in this study was designed to optimize the performance of the Extreme Gradient Boosting 
(XGBoost) algorithm in classifying coconut milk authenticity based on FTIR spectral data, with hyperparameter 
tuning performed using the Cuckoo Search Algorithm (CSA). The complete analytical workflow comprised the 
following stages: 

1. Exploratory Data Analysis (EDA): Initial examination of the FTIR spectral dataset was conducted to 
understand data structure, distribution, and identify potential anomalies or outliers. 

2. Spectral Data Preprocessing: The raw FTIR data were preprocessed using two common chemometric 
techniques: Standard Normal Variate (SNV) and Savitzky–Golay (SG) smoothing. Three datasets were 
derived from this step: the unprocessed raw data, SNV followed by SG (SNV+SG), and SG followed by 
SNV (SG+SNV). 

3. Data Splitting: Each dataset was randomly divided into training and testing subsets using an 80:20 split 
ratio, ensuring that the class distribution was preserved in both sets (stratified sampling). 

4. Baseline Modeling with Default XGBoost: For each of the three datasets, an XGBoost model was trained 
using its default parameter settings to establish a baseline. Performance was evaluated using accuracy, 
precision, recall, and F1-score. 

5. Definition of the Hyperparameter Search Space: A range of key hyperparameters for the XGBoost model 
was specified, including but not limited to:  

a. Number of estimators (n_estimators) 
b. Maximum tree depth (max_depth) 
c. Learning rate 
d. Subsample ratio 
e. Column subsample by tree (colsample_bytree) 

6. Cuckoo Search Algorithm (CSA) Optimization: CSA was implemented as the hyperparameter optimization 
strategy. Leveraging the Lévy Flight mechanism, CSA explores both global and local optima within the 
high-dimensional search space to identify the best-performing parameter combinations. 

7. Iterative Optimization Process: The CSA was iteratively executed until convergence criteria were met or a 
pre-defined maximum number of iterations was reached. 

8. Evaluation of the Optimized Model: The best XGBoost model obtained from the CSA optimization was 
tested using the reserved test set. Performance metrics (accuracy, precision, recall, F1-score) were again 
calculated and compared to the baseline model. 

9. Repetition for Robustness: To assess model stability and reduce variability due to random data splitting or 
initialization, the entire modeling process was repeated 50 times with different random seeds. 

10. Interpretation of Results: The final step involved analyzing the performance results to identify consistent 
patterns and determine the optimal hyperparameter combinations that yielded the highest predictive 
performance. 

 
TABLE II 

HYPERPARAMETER SEARCH SPACE FOR CSA OPTIMIZATION IN XGBOOST 
Hyperparameter VALUE RANGE Selection Justification 

n_estimators (50, 200) - Balances model performance and computational efficiency. 
  - Prevents underfitting (too few trees) and overfitting (excessive trees). 
max_depth (3, 15) - Shallow trees (3–6) suit high-dimensional spectral data. 
  - Deeper trees (up to 15) allow complex patterns without severe overfitting. 
learning_rate (0.01, 0.3) - Lower rates (0.01–0.1) improve generalization. 
  - Higher rates (0.1–0.3) speed up convergence but may reduce stability. 
subsample (0.5, 1.0) - Lower ratios (0.5–0.8) introduce randomness, reducing overfitting. 
  - Default (1.0) uses full data but may overfit. 
colsample_bytree (0.5, 1.0) - Subsampling features (0.5–0.8) helps manage high-dimensional data. 
  - Default (1.0) retains all features but risks noise. 
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Fig. 1.  Spectrum Data Pattern. 

 

C. Extreme Gradient Boosting 
XGBoost is a decision tree-based boosting algorithm developed by Tianqi Chen and Carlos Guestrin in 

2016 [13]. This algorithm is known for its efficiency in handling large data and its ability to improve prediction 
accuracy through an optimized gradient boosting approach 614. One of the main advantages of XGBoost is the use 
of regularization (L1 and L2) to prevent overfitting, as well as computational optimization through sparsity-aware 
splitting and Weighted Quantile Sketch [7]. XGBoost has been successfully applied in various fields, including 
financial transaction fraud detection with an accuracy of 99.96% [2], stroke risk prediction with an AUC perfor-
mance of 0.9879 [7x], and FTIR spectroscopy analysis to recognize food products [19]. In addition, XGBoost 
supports computational parallelization and can be integrated with frameworks such as Apache Spark and Hadoop, 
becoming a scalable solution for big data analysis [14]. Here are the main stages in the algorithm XGBoost: 

1. An initial model is built with constant predictions, usually the average of target values for regression or 
initial probabilities for classification. 

2. At each iteration, a new decision tree is added to the model. 
3. Optimization of the loss function to form a new tree 
4. Regularization (L1 and L2) to control model complexity and prevent overfitting. 
5. Prediction Merging by combining predictions from all constructed trees. Each tree provides a weighted 

contribution, with newer trees having higher weights (8) 
 

 
This algorithm has been used in FTIR spectral analysis to predict chemical composition and detect adultera-

tion in food products, such as olive oil and milk. XGBoost is effective for FTIR spectral data analysis due to its 
ability to handle high-dimensional data, capture non-linear relationships, and manage noise. 
 
Input: Dataset D = {(xi, yi)}, loss function L, learning rate η, iterations T   
1. Initialize model with constant value:   
   F₀(x) = argmin_θ Σ L(y_i, θ)   
2. For t = 1 to T:   
   a. Compute gradients and Hessians:   
      g_i = ∂L(yi, F{t-1}(x_i))/∂F{t-1}(xi)   
      h_i = ∂²L(y_i, F{t-1}(xi))/∂F{t-1}(xi)²   
   b. Fit weak learner (tree) to minimize:   
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      Σ [gi ϕ(xi) + 0.5 hi ϕ(xi)²] + Ω(ϕ)   
   c. Update model:   
      Ft(x) = F{t-1}(x) + η ϕt(x)   
Output: FT(x)   

Fig. 2.  Pseucode XGBoost. 

D. Cuckoo Search 
Cuckoo Search Algorithm (CSA) is a metaheuristic optimization algorithm inspired by the brood parasit-

ism behavior of cuckoo birds [4][9]. Developed by Yang and Deb in 2009, CSA uses the Lévy flight mechanism 
to balance exploration (global search) and exploitation (local search) in the solution space[17][31]. CSA has ad-
vantages in terms of ease of implementation, small number of parameters, and robustness to local optima compared 
to genetic algorithms (GA) or Particle Swarm Optimization (PSO)[17][6]. This algorithm has been successfully 
applied in various fields, such as hyperparameter optimization in XGBoost[6], road damage prediction with high 
accuracy (R² = 0.96)9, and radio-frequency power amplifier modeling. In some studies, CSA is combined with 
other methods such as Gaussian Mixture Model (GMM) to increase convergence speed4 or with Artificial Bee 
Colony (ABC) for machine learning model optimization[16].  CSA imitates the behavior of birds cuckoo in finding 
a host nest to lay eggs, as well as the process of finding and replacing eggs by host birds. The following are the 
main stages in the CSA algorithm (Yang & Deb, 2014): 

1. Initialize the nest population randomly in the search space. Each nest represents a set of hyperparameters 
to be optimized. 

2. New solutions with Lévy Flight, a random process that allows global search with long and short steps. 
3. Evaluation and selection of each new solution is evaluated based on the objective function. 
4. Some less good nests with a certain probability will be abandoned, and new solutions are generated to 

replace them. 
5. The above steps are repeated iteratively until the convergence criteria are met. 

  
Input: Population size n, discovery rate pa, Lévy flight parameter λ   
1. Initialize n host nests (solutions) randomly   
2. While (stopping criterion not met):   
   a. Generate new solution via Lévy flight:   
      xnew = xold + α ⊕ Lévy(λ)   
   b. Evaluate fitness f(xnew)   
   c. Randomly select a nest j   
   d. If f(xnew) > f(xj):   
      Replace xj with xnew   
   e. Abandon worst nests with probability pa   
   f. Replace abandoned nests with new random solutions   
Output: Best solution found   

Fig. 3.  Pseucode Cuckoo Search. 
 

E. Data FTIR 
Fourier Transform Infrared (FTIR) spectroscopy data has become an important foundation in food authen-

ticity analysis due to its ability to provide molecular structural information quickly and non-destructively [49]. The 
FTIR spectrum of coconut milk usually displays characteristic peaks at wave numbers 2925 cm⁻¹ (C-H vibration 
of fatty acid chains), 1740 cm⁻¹ (carbonyl ester group), and 1150 cm⁻¹ (C-O vibration of emulsifier) which are key 
markers for adulteration identification [50]. The main challenges in FTIR data processing include the effects of 
light scattering on colloidal samples and water interference which can be overcome through a combination of 
Standard Normal Variate (SNV) preprocessing and Savitzky-Golay second derivative [33]. Recent studies have 
shown that the mid-infrared (4000-400 cm⁻¹) and near-infrared (12500-4000 cm⁻¹) FTIR data fusion approach is 
able to increase the accuracy of adulteration detection up to 98.7% by utilizing the complementary information of 
both techniques [49]. The development of machine learning algorithms such as Convolutional Neural Network 
(CNN) for FTIR spectra analysis has also begun to be applied, where the 1D-CNN model achieved an accuracy of 
99.2% in classifying virgin vs adulterated coconut oil [50]. 

F. Coconut Milk 
Coconut milk as a natural emulsion system has a compositional complexity that is reflected in its FTIR 

spectral profile. Traditional products show a typical spectral pattern with sharp peaks at 3270 cm⁻¹ (hydrogen bond 
-OH) and 2925 cm⁻¹ (asymmetric stretching CH₂) which are significantly different from instant products containing 
stabilizers [36]. Multivariate analysis revealed that the absorbance ratio of 1150/1740 cm⁻¹ is a sensitive indicator 
to detect the addition of synthetic emulsifiers with a sensitivity of 94.3% [59]. A comparative study of 120 South-
east Asian coconut milk samples identified three main clusters based on FTIR spectra: (1) traditional products with 
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high lauric acid content (C12:0 >45%), (2) instant products with added gum, and (3) products adultered with palm 
oil [38]. This finding is supported by NMR studies showing a strong correlation (R²=0.92) between the intensity 
of the FTIR peak at 721 cm⁻¹ and the levels of saturated fatty acids [61]. In the context of quality control, the 
integration of portable FTIR with the XGBoost algorithm has been successfully applied for real-time inspection in 
a production line with a throughput of 60 samples/hour and an accuracy of 96.5% [62] 

 
 

III. RESULTS AND DISCUSSION  

A. Data Exploration 
 

 
Fig. 4.  Spectrum Data Pattern. 

 
Figure 1 presents FTIR spectral data from coconut milk samples in the wavelength range of 2500 to 4000 nm. The 
samples consist of two types, namely coconut milk from traditional markets and instant coconut milk from modern 
markets in Indonesia. These spectral data show three absorbance peaks in each type of coconut milk. In coconut 
milk from traditional markets, the absorbance peaks are located in the ranges of 2985–3000 nm, 3418–3420 nm, 
and 3449–3504 nm. Meanwhile, coconut milk from modern markets has absorbance peaks in the ranges of 2998–
3017 nm, 3382–3420 nm, and 3449–3504 nm. These spectral data contain important information about the chem-
ical properties of coconut milk that can be analyzed using a chemometric approach. However, spectral data also 
often contains irrelevant information or noise, which can be caused by light scattering. The presence of this noise 
can affect the accuracy of the predictions of the model being built. Therefore, a data pre-processing stage is re-
quired, one of which is using the Standard Normal Variate (SNV) method. In addition, spectral distortion can also 
be corrected using spectral derivatives with the Savitzky-Golay (SG) algorithm. In this study, a combination of two 
pre-processing approaches was carried out, namely SNV followed by SG (SNV + SG) and SG followed by SNV 
(SG + SNV), the results of which can be seen in Figure 1. 
 

B. Classification Without Tuning Hyperparameter  
This In this study, the classification method used to analyze FTIR spectral data is XGBoost. This method 

was chosen because of its high capability in handling complex and non-linear data, such as spectral data from FTIR. 
XGBoost is a boosting algorithm that gradually builds a model by minimizing errors from the previous model, 
resulting in more accurate and efficient predictions. The classification model was built 50 times to evaluate the 
consistency of model performance. FTIR spectral data is divided into two parts, namely 80% for training data and 
20% for test data, which are used in the process of training and testing the model repeatedly. The purpose of this 
repetition is to ensure that the classification results do not only depend on one data division, but reflect stable and 
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reliable model performance. By applying XGBoost without hypertuning parameters, it is expected that an effective 
classification model can be produced in distinguishing types of coconut milk from traditional and modern markets.  
 

TABLE III 
COMPARISON OF CLASSIFICATION METHODS WITHOUT PARAMETER HYPERTUNING 

DATASET METHOD Metriks Mean Repeat 30 
Times 

Mean Repeat 40 
Times 

Mean Repeat 50 
Times 

XGBOOST No Processing Accuracy 0.711111 0.708333 0.702222 
 No Processing Precision 0.696905 0.719345 0.710476 
 No Processing Recall 0.664683 0.657679 0.649476 
 No Processing F1-score 0.652621 0.652204 0.645713 
 SNV+SG Accuracy 0.785185 0.758333 0.753333 
 SNV+SG Precision 0.820556 0.805833 0.795 
 SNV+SG Recall 0.698016 0.688929 0.67781 
 SNV+SG F1-score 0.718465 0.698551 0.69161 
 SG+SNV Accuracy 0.785185 0.758333 0.753333 
 SG+SNV Precision 0.820556 0.805833 0.795 

 SG+SNV Recall 0.698016 0.688929 0.67781 

 SG+SNV F1-score 0.718465 0.698551 0.69161 

 
 

The experimental results demonstrate that the application of FTIR spectral data preprocessing techniques 
has a significant impact on the performance of the classification model using the XGBoost algorithm. Specifically, 
Table 2 presents a comparative evaluation of XGBoost classification metrics over three different iteration scenar-
ios—30, 40, and 50 times—across three data configurations: without preprocessing, with SNV followed by SG 
(SNV + SG), and with SG followed by SNV (SG + SNV). In the 50-iteration setting, which provides the most 
stable and reliable performance estimate, the XGBoost model using SNV + SG or SG + SNV preprocessing 
achieved the highest classification accuracy of 0.7533, showing a consistent improvement over the model trained 
on raw data, which only reached an accuracy of 0.7022. Precision also improved notably from 0.7105 (no prepro-
cessing) to 0.795 (with either preprocessing combination), indicating a better ability of the model to correctly iden-
tify the positive class. However, the recall score increased only slightly, from 0.6495 to 0.6778, suggesting that 
while the model became more confident in its predictions, it still faced difficulty in detecting all relevant positive 
samples. The F1-score, which balances precision and recall, rose from 0.6457 to 0.6916—again emphasizing the 
performance benefit of preprocessing. These results strongly reinforce the importance of the preprocessing stage 
in chemometric-based analysis, particularly in the context of high-dimensional spectral data like FTIR. 

 
This baseline experiment was deliberately designed to isolate and investigate the contribution of prepro-

cessing, prior to the introduction of hyperparameter tuning or metaheuristic optimization techniques. The goal was 
to evaluate how far the classification performance could be improved solely by leveraging the structural strength 
of the XGBoost algorithm in conjunction with carefully prepared input data. While the primary metrics reflect an 
expected benefit from preprocessing, a deeper exploration of the results uncovers more nuanced insights about the 
data-model interaction. 

 
One notable pattern is the increased consistency and reduced variance in classification metrics across re-

peated iterations when preprocessing is applied. In raw data scenarios, the model's performance fluctuated more 
widely, which may be attributed to noise, baseline shifts, and outliers commonly present in unprocessed FTIR 
spectra. The application of SNV and SG filtering appeared to stabilize the model’s learning process by suppressing 
irrelevant variance and enhancing the signal-to-noise ratio of chemically informative bands. This suggests that 
preprocessing not only improves performance but also contributes to model robustness and reliability. 

 
Another subtle observation is the asymmetric gain across evaluation metrics. While precision showed the 

largest improvement, followed by accuracy and F1-score, recall exhibited only marginal gains. This indicates that 
the preprocessed model is more conservative—it avoids false positives more effectively but still struggles to recall 
all true positive cases. This behavior is particularly useful in domains like food authentication, where misclassifying 
adulterated products as authentic can have serious consequences. The model seems to err on the side of caution, 
reflecting a higher threshold for positive classification, which may be driven by better-defined decision boundaries 
in the preprocessed feature space. 
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Interestingly, the analysis revealed that the order of preprocessing (SNV + SG versus SG + SNV) had 
virtually no effect on the final outcomes. Despite their algorithmic differences, both sequences led to nearly iden-
tical accuracy, precision, recall, and F1-score values. This convergence suggests that the transformations project 
the original spectral data into a similar latent feature space, where class separability is enhanced. It challenges the 
assumption that the sequencing of preprocessing steps is always critical, and instead implies that the choice and 
combination of transformaions may be more influential than their order. 

Despite these advancements, the results also highlight the inherent limitations of untuned classification 
models. The performance metrics, although improved, reached a plateau, with accuracy peaking at approximately 
75.3% and F1-score at around 69.1%. These plateaus suggest the presence of a performance ceiling, potentially 
imposed by factors such as spectral similarity between sample classes, feature redundancy, or insufficient explora-
tion of the model’s parameter space. Given the complexity and high dimensionality of FTIR data—which often 
includes highly collinear and overlapping bands—this limitation is expected. Therefore, further enhancements are 
likely achievable through the application of hyperparameter optimization strategies, such as Cuckoo Search Algo-
rithm (CSA), or through advanced ensemble methods that can better exploit the structure of the data. 

This phase of the study establishes a critical foundation by demonstrating that even without parameter 
tuning, the XGBoost classifier, when supported by appropriate preprocessing, is capable of delivering reliable per-
formance in detecting coconut milk adulteration using FTIR data. At the same time, it reveals important consider-
ations for model refinement and opens up avenues for more sophisticated optimization techniques to further im-
prove classification accuracy, sensitivity, and robustness in complex chemometric datasets. 

C. Classification with Cuckoo Search 
Hyperparameter tuning is one of the effective methods to improve model performance. In this study, the 

Cuckoo Search algorithm is used to optimize the hyperparameters of the XGBoost models. This range allows the 
search for optimal solutions that refer to the behavior of the cuckoo bird and the Levy Flight mechanism used to 
accelerate the exploration process. In addition, for the XGBoost model, the Cuckoo Search optimization function 
explores hyperparameters within the range of n estimators between 50 and 200, max depth between 3 and 15, 
learning rate between 0.01 and 0.3, and subsample between 0.5 and 1.0. With adaptive exploration and exploitation 
mechanisms, the Cuckoo Search algorithm is able to find the optimal combination of hyperparameters, which in 
turn improves the model accuracy by minimizing the value of the specified objective function. 
 

TABLE IV 
COMPARISON OF CLASSIFICATION METHODS WITH CUCKOO SEARCH 

DATASET METHOD Metriks Mean Repeat 30 
Times 

Mean Repeat 40 
Times 

Mean Repeat 50 
Times 

XGBOOST  No Processing   Accuracy   0.8407   0.8361   0.8267  
  No Processing   Precision   0.9100   0.9225   0.9009  
  No Processing   Recall   0.7425   0.7398   0.7351  
  No Processing   F1-score   0.7960   0.7964   0.7826  
  SNV+SG   Accuracy   0.8741   0.8556   0.8444  
  SNV+SG   Precision   0.9517   0.9475   0.9273  
  SNV+SG   Recall   0.7613   0.7489   0.7391  
  SNV+SG   F1-score   0.8262   0.8116   0.7994  
  SG+SNV   Accuracy   0.8704   0.8500   0.8400  
  SG+SNV   Precision   0.9467   0.9375   0.9193  

  SG+SNV   Recall   0.7675   0.7535   0.7428  

  SG+SNV   F1-score   0.8254   0.8075   0.7961  

 
The application of the Cuckoo Search Algorithm (CSA) demonstrated substantial effectiveness in optimiz-

ing XGBoost models for the classification of coconut milk authenticity using FTIR spectral data. Compared to the 
baseline performance without tuning, CSA optimization significantly elevated the model’s accuracy even when no 
preprocessing was applied—raising it from 0.7022 to 0.8407, a relative improvement of nearly 20%. This consid-
erable gain highlights the suboptimal nature of default parameter settings and the ability of CSA to navigate com-
plex hyperparameter spaces, successfully adjusting critical parameters such as the number of estimators, tree depth, 
learning rate, and sampling ratios to produce more discriminative models. 

The impact of CSA became even more pronounced when combined with spectral preprocessing techniques. 
Among the configurations tested, the SNV+SG preprocessing pipeline produced the highest classification accuracy 
of 0.8741, while the SG+SNV sequence followed closely with an accuracy of 0.8704. Although the numerical 
difference in accuracy was minor, a more nuanced analysis revealed distinct strengths between the two. SG+SNV 
exhibited superior precision, achieving 0.9467 compared to 0.9273 for SNV+SG, indicating a stronger ability to 
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correctly classify authentic coconut milk samples with fewer false positives. This suggests that applying Savitzky–
Golay smoothing prior to Standard Normal Variate normalization may better preserve fine spectral features relevant 
to detecting subtle adulteration, especially in samples where chemical similarities blur class boundaries. 

These differences point to a deeper underlying spectral phenomenon: the sequence of preprocessing steps 
not only influences general model performance but also shapes the classification behavior—particularly the trade-
off between precision and recall. Whereas SNV+SG might enhance overall balance by reducing spectral variance, 
SG+SNV may retain more localized peak characteristics essential for capturing minor yet critical distinctions be-
tween sample types. Such micro-effects often go unnoticed in aggregate metrics like accuracy but become evident 
through analysis of precision-recall dynamics, especially in high-dimensional and noisy spectral domains like 
FTIR. 

Beyond improvements in predictive power, CSA also contributed significantly to model robustness and 
stability. Across all repetition scenarios (30, 40, and 50 iterations), the standard deviations of accuracy, precision, 
recall, and F1-score remained consistently low (under 0.01), underscoring the algorithm’s capacity to yield repeat-
able and generalizable results. This reliability is particularly valuable in real-world applications where spectro-
scopic data often vary due to environmental, instrumental, or sample preparation factors. Notably, the F1-score—
reflecting the balance between precision and recall—increased markedly with preprocessing and tuning, rising from 
0.6457 (baseline) to 0.7994 (with SNV+SG and CSA), demonstrating CSA’s role in stabilizing and enhancing 
model performance holistically. 

A subtler yet critical insight emerges when examining recall values, which, despite high precision, re-
mained comparatively moderate (ranging from approximately 0.735 to 0.761). This asymmetry suggests that the 
models, while cautious and precise, may underperform in detecting all relevant positive cases—likely due to the 
presence of borderline or hybrid spectra. Such cases could represent coconut milk samples with low-level adulter-
ation or overlapping chemical signatures, making them difficult to classify confidently even with optimized models. 
Addressing this challenge may require strategies beyond global preprocessing—such as spectral segmentation, do-
main-informed feature selection, or interpretability tools like SHAP to isolate informative regions. 

Interestingly, the performance gap between SNV+SG and SG+SNV appeared to narrow after CSA tuning, 
in contrast to the more noticeable difference observed in the untuned baseline. This convergence implies that opti-
mization can partially mitigate the impact of preprocessing order by allowing the model to better adapt its internal 
structure to the processed feature space. In other words, while preprocessing prepares the data by enhancing signal 
quality, CSA enables the classifier to exploit this improved representation more effectively, leading to synergistic 
improvements that neither component could achieve alone. 

Overall, the integration of CSA transformed XGBoost from a strong baseline model into a high-precision, 
stable, and robust classifier capable of handling the complex and subtle variations inherent in FTIR spectral data 
for food authentication. The observed trade-offs between accuracy and precision across preprocessing methods also 
suggest that model configuration can be tailored to meet specific application requirements—such as prioritizing 
high precision in regulatory contexts or favoring higher recall in quality control settings to minimize missed adul-
teration cases. 

These findings not only confirm the value of CSA as an optimization tool in chemometric modeling but 
also illuminate the intricate interplay between data preprocessing, model tuning, and algorithmic behavior. In do-
mains characterized by high-dimensional, chemically rich datasets like FTIR spectroscopy, no single technique 
suffices. Instead, this study underscores the importance of integrated modeling pipelines—combining rigorous pre-
processing, powerful learning algorithms, and intelligent optimization—to achieve accurate, interpretable, and ap-
plication-ready solutions for food authenticity and beyond. 

 

D. Comparison Method 
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Fig. 5.  Comparison Metrik of Method 

 
For comparative visualization, the Tree-structured Parzen Estimator (TPE) was used as a general baseline. 

TPE is a probabilistic optimization method known for its efficiency in complex search spaces. However, this study 
focuses on evaluating the effectiveness of bio-inspired approaches, particularly CSA, in the context of FTIR 
spectral data classification. 

The application of CSA for XGBoost hyperparameter optimization yielded statistically significant 
improvements in classifying coconut milk authenticity. Without spectral preprocessing, CSA alone increased 
model accuracy from 0.7022 to 0.8267 (a 17.7% improvement), precision from 0.7105 to 0.9009 (26.8%), and F1-
score from 0.6457 to 0.7826 (21.2%). A precision of 90.1% indicates that nearly all samples predicted as authentic 
were indeed genuine—a critical achievement in food fraud prevention and consumer protection. CSA’s 
effectiveness stems from its intelligent exploration of high-dimensional hyperparameter spaces, including learning 
rate, max tree depth, and regularization gamma. The optimal combination discovered provided a well-balanced 
trade-off between model complexity and generalization, improving accuracy by 14.2% over XGBoost’s default 
configuration. This highlights the importance of advanced tuning methods, especially for complex datasets like 
FTIR spectra. When combined with spectral preprocessing, CSA’s performance gains became even more 
substantial. The Standard Normal Variate (SNV) + Savitzky-Golay (SG) pipeline emerged as the most effective, 
achieving an accuracy of 0.8444 and precision of 0.9273, outperforming both the SG+SNV approach (accuracy: 
0.8400) and the untuned default model (accuracy: 0.7533). The SNV+SG sequence proved particularly effective in 
correcting baseline variations and light scattering effects, enhancing the model’s ability to detect subtle spectral 
differences between pure and adulterated coconut milk. These findings not only demonstrate CSA’s superiority 
over conventional methods like TPE in FTIR-based analysis but also underscore the importance of integrating bio-
inspired optimization with signal preprocessing. CSA effectively avoids suboptimal configurations prone to 
underfitting or overfitting while maximizing hidden spectral information. This approach holds promising potential 
for broader applications in food authenticity testing using spectroscopy. 

However, a well-documented trade-off remains: as precision increases, recall tends to decrease. This 
pattern was evident across all configurations, with the highest-performing models exhibiting recall values in the 
range of 0.7351–0.7391. This suggests that while the model becomes more conservative—avoiding false 
positives—it may also miss a fraction of truly authentic samples, particularly those with ambiguous or borderline 
spectral signatures. From a risk management perspective, such conservatism may be desirable in regulatory 
scenarios where false assurances of authenticity must be minimized. Nevertheless, for operational contexts such as 
high-throughput screening, strategies to boost recall (e.g., through ensemble methods or post-classification 
calibration) could be explored in future work. 
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E. Feature Importance Analysis 
 

 

Fig. 6.  Feature Importance Analysis 
 
 

The analysis of feature importance in the XGBoost model reveals that the most influential spectral features for 
classifying coconut milk samples are concentrated in the wavelength range of 2500–4000 nm, corresponding to 
key functional groups in organic compounds. Peaks at 2947.4 nm, 2951.8 nm, 2980.0 nm, and 2985.4 nm are as-
sociated with O-H stretching vibrations (alcohols, carboxylic acids) and C-H asymmetric stretches, which are 
characteristic of triglycerides and free fatty acids abundant in coconut milk. These features highlight the model’s 
reliance on lipid profiles to differentiate between traditional (less processed) and modern (homogenized) coconut 
milk. Additionally, wavelengths such as 3342.3 nm, 3408.3 nm, and 3466.7 nm, indicative of hydrogen-bonded 
O-H stretches, reflect differences in water content and interactions, with traditional samples retaining more natu-
ral water and modern samples potentially exhibiting altered properties due to emulsifiers or stabilizers. Other no-
table features, like 2537.7 nm and 2580.3 nm, may correspond to C=O stretches (esters, ketones) or N-H bends 
(proteins), suggesting variations in protein composition or additives between sample types.   
 

The dominance of O-H stretches (alcohol, carboxylic acid, and water) in the feature importance map, account-
ing for over 60% of the total scores, aligns with the known composition of coconut milk. Traditional samples 
show stronger O-H signals from free fatty acids due to natural hydrolysis, while modern samples exhibit modi-
fied O-H patterns, likely due to processing aids. This chemical insight validates the model’s decision-making pro-
cess and underscores its practical utility for detecting adulteration. For instance, a reduction in O-H stretch inten-
sity at 3400–3500 nm could indicate water dilution, while shifts in C-H peaks (2900–3000 nm) might reveal non-
native lipids. By linking spectral features to specific chemical properties, this analysis not only enhances the in-
terpretability of the model but also provides a foundation for targeted quality control measures in the food indus-
try. 
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F. Limitations and Future Directions 
 
This study successfully demonstrated the effectiveness of combining FTIR spectroscopy, preprocessing 

techniques, XGBoost, and the Cuckoo Search Algorithm (CSA) for classifying coconut milk authenticity. However, 
several limitations and opportunities for future improvement warrant discussion. 
 

1. Challenging samples and classification difficulties were observed during the analysis.  
Some coconut milk samples, particularly those with partial adulteration or mixed sourcing, exhibited 
overlapping spectral features in the 3449–3504 nm range, leading to misclassification. These samples often 
had intermediate absorbance values, making them difficult to categorize confidently. Additionally, samples 
with high baseline noise or instrumental artifacts, such as traditional market samples with particulate 
contaminants, showed distorted peaks at 2985–3000 nm, which occasionally caused false positives. These 
cases highlight the need for more robust preprocessing or targeted feature selection to handle ambiguous 
spectral profiles. 

 
2. The proposed framework has potential applications beyond coconut milk authentication. 

The methodology could be extended to other high-value food products susceptible to adulteration, such as 
dairy products, honey, and spices. For instance, milk powder or butter adulterated with vegetable oils share 
spectral similarities with coconut milk and could benefit from SNV+SG preprocessing to resolve lipid-
related peaks. Similarly, honey adulterated with sugar syrups or spices mixed with fillers could be detected 
using FTIR combined with CSA-tuned models. However, variations in matrix complexity, such as 
differences between solid and liquid samples, may require adaptive preprocessing techniques. For example, 
dried spices might need additional baseline correction steps beyond SNV to account for their unique 
spectral characteristics. 

3. Several limitations of the current study should be acknowledged.  
The dataset was limited to coconut milk samples from Indonesian markets, which may not fully capture 
regional differences in coconut varieties or processing methods. Additionally, the samples were collected 
from a finite number of suppliers, potentially underrepresenting extreme adulteration cases or novel 
adulterants. If open-source spectral libraries were used, they might not fully reflect local adulteration 
practices, introducing potential biases. Furthermore, the current model may struggle with unseen 
adulterants, such as new synthetic additives, suggesting the need for incorporating anomaly detection or 
one-class classifiers to improve generalizability. 

4. Future research directions could further enhance the framework’s robustness and applicability. 
Testing advanced preprocessing methods like Multiplicative Scatter Correction (MSC) or wavelet trans-
forms could help target specific noise types more effectively. Incorporating explainability tools such as 
SHAP (SHapley Additive exPlanations) would help identify critical wavelength ranges driving classifica-
tion decisions, aiding in regulatory compliance and model transparency. Additionally, validating the frame-
work on multi-food datasets would assess its universal applicability and scalability to broader food authen-
ticity challenges. These refinements would ensure the method remains effective as adulteration techniques 
evolve and new food products are introduced into the market. 

 

IV. CONCLUSIONS 
Based on the experimental results, the combination of SNV+SG preprocessing, XGBoost, and Cuckoo Search 

hyperparameter optimization emerged as the most effective framework for FTIR-based coconut milk authenticity 
classification. This approach achieved peak performance (accuracy: 0.8444, precision: 0.9273) by effectively 
reducing spectral noise, sharpening discriminative features, and optimizing model parameters. The success of this 
bio-inspired optimization method opens new avenues for applying nature-inspired algorithms to spectroscopic food 
authentication. Furthermore, the interpretability of feature importance, particularly the dominance of O-H and C-
H vibrational bands, provides actionable insights for regulatory bodies and quality control laboratories. The 
framework’s adaptability suggests potential applications to other high-risk adulterated foods, though future work 
should address recall trade-offs and regional sample diversity. For implementation, we strongly recommend the 
SNV+SG pipeline with CSA-tuned XGBoost as a robust solution for combating coconut milk fraud. 
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