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This study focuses on enhancing software defect prediction (SDP) by in-
tegrating Convolutional Neural Networks (CNN) with the AdaBoost al-
gorithm. The PROMISE dataset was employed in this research, and data 
balancing was achieved using the SMOTE Tomek technique. With the 
help of AdaBoost, we were able to increase the prediction accuracy after 
building a complex CNN model to extract features from the dataset. The 
AdaBoost model's hyperparameters were fine-tuned using GridSearchCV 
to find the best values for enhanced model performance. For the studies, 
we used StandardScaler to normalize the data after splitting it into train-
ing and testing groups with an 80:20 ratio. The experimental results show 
that compared to the baseline method, SDP accuracy significantly im-
proves when CNN, AdaBoost, and hyperparameter tuning on AdaBoost 
using GridSearchCV are used together. Accuracy, precision, recall, F1 
score, MCC, and AUC were some of the measures used to assess the 
model's performance. 
 
 
 

I. INTRODUCTION 
n the rapidly evolving software industry, ensuring high software quality is essential. Software defects can lead 
to significant issues, including financial losses, wasted time, and a damaged reputation. Therefore, early 
detection of software defects is crucial to mitigate these problems. 

Previous research by Begum et al.  has explored various strategies to enhance the accuracy of Software Defect 
Prediction (SDP). One such approach is the Lightweight Convolutional Neural Network (LCNN) architecture, 
which employs Explainable AI (XAI) techniques like LIME and SHAP to improve model interpretability [1]. This 
allows for a clearer understanding of model decisions and highlights key features that influence defect predictions. 

However, despite these advancements, existing methods still face challenges in balancing accuracy, 
interpretability, and handling imbalanced datasets. Recent studies, such as the one by Chen et al., introduced a more 
sophisticated framework for software defect prediction using Nested-Stacking combined with heterogeneous 
feature selection. This approach has been shown to improve prediction accuracy and effectively address data 
imbalance issues on datasets like PROMISE and Kamei [2]. 

Moreover, research by Nasraldeen et al. demonstrated that integrating SMOTE Tomek with CNN and GRU can 
significantly enhance defect prediction accuracy, particularly when dealing with imbalanced datasets. While 
promising, these techniques still struggle with overfitting and require careful hyperparameter optimization [3]. 

In this study, we propose to address these limitations by combining CNN with the AdaBoost algorithm to 
improve SDP accuracy. Our approach leverages the feature extraction capabilities of CNN along with the robust 
performance enhancement provided by AdaBoost to reduce overfitting. Additionally, we employ SMOTE Tomek 
to balance the PROMISE dataset prior to training, ensuring that the model remains unbiased towards the majority 
class. 

 This research offers a unique contribution by demonstrating how the combination of CNN and AdaBoost can 
overcome the limitations of previous approaches. We also explore the effectiveness of using GridSearchCV for 
hyperparameter tuning to optimize the performance of both CNN and AdaBoost, thereby addressing the gaps in 
existing research related to model tuning and optimization. 

The primary gap this study addresses is the lack of a comprehensive approach that effectively balances data, 
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optimizes model hyperparameters, and improves both accuracy and interpretability in SDP. By focusing on these 
aspects, our research not only contributes to the academic field but also provides practical solutions that can be 
applied in the software industry to enhance product quality. 

 

II. RESEARCH METHODOLOGY 
In this study, the following steps were taken to predict software defects:  

A. Data Collection 
Data was gathered through various sources, including platforms like the Kaggle website. These sources provided 

the essential information regarding software metrics needed for SDP analysis. The dataset utilized in this study is 
ant-1.7, which includes various software code metrics and defect labels. 

B. Data Preprocessing 
The data was cleaned and prepared for usage by going through a number of preparatory stages. The following 

preprocessing steps were applied [2]: 
1) Data Cleaning 

To deal with missing data, we either removed it or used the feature's median or mean to impute the 
missing values. 

2) Normalization 
The data was normalized to ensure consistency in scale. The normalization was performed using the 

StandardScaler from sklearn, as formulated below: 
 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎  

 

 
(1) 

Where 𝑋𝑋 is the feature, 𝜇𝜇 is the mean, and 𝜎𝜎 is the standard deviation. 
3) Balancing 

The SMOTE Tomek technique was employed to balance the class distribution within the training data. 
SMOTE combines oversampling with the Tomek Links undersampling method to address class 
imbalance in the dataset. The SMOTE formula is as follows: 

 
xnew = xminority + λ ⋅ �xnearest − xminority� 

 

 
(2) 

Where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 is the synthetic sample, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the minority class sample, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the nearest 
neighbor, and 𝜆𝜆 is a random number between 0 and 1. 

4) Data Split 
There are two distinct categories of pre-processed data: training data and testing data. The data was 

divided in half, with 80% going into training and 20% into testing. This data division technique made 
use of sklearn's train_test_split function. 
 

C. Justification for Method Selection 
The choice of CNN, AdaBoost, and SMOTE Tomek is grounded in their proven effectiveness in addressing key 

challenges in software defect prediction: 
1) CNN 

CNN was selected for its ability to automatically extract and learn complex features from the input data, 
which is crucial for capturing intricate patterns within software metrics. CNN's hierarchical structure 
makes it ideal for modeling spatial relationships in data, similar to its use in image processing but adapted 
here for software defect prediction. 

2) Adaboost 
AdaBoost was chosen for its strength in boosting weak learners, thereby improving model accuracy and 

reducing overfitting. It combines multiple weak classifiers to form a strong classifier, making it 
particularly effective in refining the predictions generated by the CNN model. 

3) SMOTE Tomek 
SMOTE Tomek was employed to tackle the class imbalance issue that commonly affects SDP datasets. 

By generating synthetic samples for the minority class and removing borderline examples from the 
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majority class, this technique ensures a balanced dataset, which is crucial for training robust and unbiased 
models. 
 

D. Convolutional Neural Network (CNN) 
1) Overview 

Convolutional Neural Networks (CNNs) were originally designed to process data with a grid-like 
arrangement, such as images, which inherently have a two-dimensional structure. However, CNNs have 
been successfully adapted for various types of non-image data, including speech recognition and natural 
language processing. These applications demonstrate the flexibility of CNNs in handling different types 
of structured data by transforming them into a format suitable for convolutional processing. 

In this study, the CNN architecture is used to process software metrics data, which is typically tabular 
and does not naturally have a grid structure like images. To adapt this tabular data for CNN processing, 
the data is transformed into a two-dimensional grid format, where each feature in the dataset corresponds 
to a "pixel" or unit in this grid. This transformation allows the CNN to apply its convolutional layers 
effectively, extracting complex patterns and relationships between the features. 

The CNN model used in this research includes several key components, as illustrated in Figure 1 [2]. 
  

 
Figure. 1. CNN model for SDP 

 
The architecture consists of convolutional, batch normalization, and max-pooling layers, which make 

up the network's hidden layers. The max-pooling layers reduce the dimensionality of the feature space, 
while the convolutional layers calculate the weights for the next layer based on specific filter and kernel 
parameters. Batch normalization is applied to mitigate the impact of varying input distributions across 
mini-batches, thereby enhancing the training process. Activation functions are employed to ensure that 
the CNN model trains accurately and efficiently. Among the most commonly used activation functions 
in CNNs are Sigmoid, ReLU, and Tanh. In this model, two activation functions are used: Sigmoid for 
the output layer and ReLU for the input and hidden layers, as shown in the following equations. 

 
ℎ𝑖𝑖𝑚𝑚 = ReLU(𝑊𝑊𝑖𝑖

𝑚𝑚−1 × 𝑉𝑉𝑖𝑖𝑚𝑚−1 + 𝑏𝑏𝑖𝑖𝑚𝑚−1) 
 

(3) 

Where ℎ𝑖𝑖𝑚𝑚 represents the convolutional layer, 𝑊𝑊𝑖𝑖
𝑚𝑚−1 represents the neuron weights, 𝑉𝑉𝑖𝑖𝑚𝑚−1 represents 

the nodes, and 𝑏𝑏𝑖𝑖𝑚𝑚−1 represents the bias layer. 
  

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−∑ 𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘 +𝑏𝑏 
 

(4) 

Where 𝑥𝑥𝑖𝑖 is the input, 𝑊𝑊𝑖𝑖 is the input weight, 𝑒𝑒 is Euler's number (e =2.718...), and 𝑏𝑏 is the bias. 
 

2) Complex CNN 
For more complicated data management, there is an improved variant of the classic CNN called the 
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Complex CNN. Its capacity to extract useful characteristics from data is enhanced by the incorporation 
of several more layers and features. Here are some improvements: 

a) More Convolutional Layers 
Complex CNN utilizes more convolutional layers than the basic CNN, enabling deeper and 

more complex feature extraction. 
b) Diverse Pooling Layers 

In addition to max pooling, Complex CNN can use average pooling to reduce data 
dimensionality and prevent overfitting. 

c) Intensive Batch Normalization 
Batch normalization is applied after each convolutional layer to stabilize input distributions 

and speed up training. 
d) Extensive Dropout 

Dropout is extensively used after each convolutional and dense layer to prevent overfitting. 
e) Varied Activation Functions 

In addition to ReLU and Sigmoid, Complex CNN can use other activation functions like 
Leaky ReLU or ELU to address different data issues. 

f) Complex Optimization 
Complex CNN uses advanced optimizers such as Adam or RMSprop and regularization 

techniques like L2 to improve model performance. 
g) Use of Residual Connections 

Certain Complex CNNs incorporate residual connections, inspired by ResNet, to mitigate 
the vanishing gradient issue and facilitate deeper learning within the model. 
 

E. AdaBoost 
After features are extracted using CNN, AdaBoost is used to enhance model performance and reduce overfitting. 

The best parameters for AdaBoost are determined using GridSearchCV with the following parameter grid: [3][4] 
  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 = {′𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′: [50,100,200], ′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′: [0.01,0.1,1.0]} (5) 

 
AdaBoost is implemented with the formula: 
 

𝐹𝐹𝑚𝑚(𝑥𝑥) = sign�� α𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)
𝑀𝑀

𝑚𝑚=1

� 

 

(6) 

Where 𝐹𝐹𝑚𝑚(𝑥𝑥) is the final model, 𝛼𝛼𝑚𝑚 is the weight of m-th model, and ℎ𝑚𝑚(𝑥𝑥) is the mmm-th predictive model. 
 

F. Parameter Optimization 
The parameters for AdaBoost, such as n_estimators and learning_rate, were fine-tuned using GridSearchCV. 

This allowed for systematic exploration of various parameter combinations to identify the configuration that 
maximized model performance while minimizing overfitting. The best parameters were then used to train the final 
AdaBoost model on the features extracted by the CNN. 

 

G. Model Evaluation 
Precision, accuracy, recall, F1 score, MCC, and AUC are some of the measures used to evaluate the model. You 

can not evaluate the model's performance in forecasting software problems without these measures. The steps of 
the study procedure are laid forth in Table I. 

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016


JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) 
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi  

ISSN: 2540-8984  
Vol. 10, No. 3, September 2025, Pp. 2046-2055 

 
 

 

2050 
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation 

 

III. RESULTS AND DISCUSSION 

A. Dataset 
The PROMISE dataset was used to test the SDP model. Table II provides a description of the selected dataset, 

the "ant" project version 1.7, with 745 samples and a defect rate of 22.28%. This dataset consists of various software 
metrics listed in Table III, which are used to train and test the CNN model used in this research. The use of this 
dataset allows for evaluating the accuracy and effectiveness of the model in identifying software defects. 

 
TABLE II 

DESCRIPTION OF PROMISE DATASET 
Project 
Name Project Version # Number of Instances Defect Rate % 

ant 1.7 745 22.28% 

 
 

TABLE III 
LIST OF STATIC METRICS IN PROMISE DATASET 

Attribute Description 

LOC (Lines of Code) Number of lines of code in the code unit 

CYCLO (Cyclomatic 
Complexity) 

Cyclomatic complexity of the code, which reflects the number of in-
dependent paths in the code 

CLASS Class name in unit code 

TABLE I 
RESEARCH FLOW 

Step Activities Description 

Data Collection Data Retrieval Collecting dataset from Kaggle. 

Pre-Processing Oversampling Using SMOTE to address data imbalance. 

Split Data Splitting data into 80% training, 10% validation, 
and 10% testing. 

Machine Learning 
Pipeline 

Convolutional Neu-
ral Network (CNN) 

Using CNN to extract complex features from soft-
ware data. 

AdaBoost Using AdaBoost to improve CNN model perfor-
mance and reduce overfitting. Determining the 
best parameters for AdaBoost using 
GridSearchCV. 

Evaluation Model Evalution Evaluating model performance using metrics such 
as accuracy, precision, recall, F1-score, MCC, and 
AUC. 

Results Evaluation 
and Analysis 

Analysis of Evalua-
tion Results 

Analyzing evaluation results to assess the effec-
tiveness of the model in predicting software de-
fects. 

Discussion and Con-
clusion 

Discussion and 
Conclusion 

Discussing and drawing conclusions from re-
search results. 
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WMC (Weighted 
Methods per Class) Total number of method complexities in the class 

DIT (Depth of Inher-
itance Tree) The depth of the inheritance tree for the class 

NOC (Number of 
Children) The number of derived classes of the class 

CBO (Coupling Be-
tween Objects) The number of other objects that are joined by the class 

RFC (Response for a 
Class) The number of methods that can be called by the class 

LCOM (Lack of Co-
hesion in Methods) Level of cohesion between in-class methods 

BUG Label indicating whether the code unit contains a defect (1) or not (0) 

 

B. Data Split 
After data is collected and prepared, it needs to be split into training, validation, and testing sets to ensure an 

objective evaluation of the model. When it comes to training, validation, and testing, the ratio is 80/20. The training 
set is used to train the model, the validation set to fine-tune the hyperparameters and avoid overfitting, and the test 
set to assess the model. For consistent scaling, data is normalized using StandardScaler, and data is divided using 
the train_test_split function from the sklearn package. This process ensures that the model is trained and evaluated 
effectively, providing an accurate estimate of its performance on unseen data. 

C. Convolutional Neural Network (CNN) dan AdaBoost 
Three models were tested: one baseline model (serving as a comparison point) and two proposed models (new 

models proposed to improve accuracy). Precision, Accuracy, Recall, F1 Score, MCC, and AUC were some of the 
assessment measures that exhibited diversity in the test findings. Table IV below displays the outcomes.  

 
TABLE IV 

LIST OF TEST MODEL 

Test Structure Description 

I CNN AdaBoost with SMOTE Tomek Baseline Model 

II Complex CNN AdaBoost with SMOTE Tomek Proposed Model 

III More Complex CNN AdaBoost with SMOTE Tomek Proposed Model 

 
1) First Test (Baseline Model)  

Using SMOTE Tomek and the CNN + AdaBoost model, the first test was conducted. After loading, the dataset 
was partitioned into labels and features. A training set and a testing set were subsequently created from the data. 
The training set was subjected to the SMOTE Tomek approach in order to rectify the data imbalance. In order to 
get features out of the balanced data, the CNN model was then constructed. The AdaBoost model was trained to 
make predictions using the features produced by CNN as input. To evaluate the model's performance, predictions 
were performed on the test set after training. Evaluation measures including recall, accuracy, precision, F1 score, 
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MCC, and AUC were computed. A Confusion Matrix was also used to display the outcomes of the predictions. 
Figure 2 and Table V display the findings. 

 

 
Figure. 2. Confusion Matrix for Test I 

 
TABLE V 

TEST RESULTS 
Test 

Model Accuracy Precision Recall F1 Score MCC AUC 

I 0.77 0.45 0.80 0.58 0.47 0.84 

 
The Confusion Matrix revealed that the baseline model correctly classified 24 true positives and 90 true 

negatives, but it also produced 29 false positives and 6 false negatives. The accuracy of 0.77 indicates that the 
model correctly predicted 77% of all instances. However, the precision of 0.45 suggests that when the model 
predicted a defect, it was correct only 45% of the time, indicating a high false positive rate. The recall of 0.80 
shows that the model successfully identified 80% of actual defects, but the low precision led to a lower F1 Score 
of 0.58. The MCC of 0.47 indicates a moderate level of agreement between the actual and predicted classifications, 
signaling room for improvement in the model's performance. 

These metrics showed that while the baseline model achieved reasonable accuracy, there were notable 
weaknesses in precision and F1 Score, indicating that the model struggled with correctly identifying defective 
instances without sacrificing the accuracy of non-defective instances. This provided a clear motivation to explore 
more sophisticated models. 

 
2) Second Test (Proposed Model) 

The second test utilized the Complex CNN + AdaBoost model with SMOTE Tomek. The dataset was loaded and 
divided into features and labels, then balanced using SMOTE Tomek. Following data normalization using 
StandardScaler, the balanced dataset was divided into a training set and a testing set. Convolutional, pooling, and 
dropout layers were added to a more intricate CNN model in order to avoid overfitting. Following CNN training, 
the AdaBoost model was trained using the retrieved features. The hyperparameters of the AdaBoost model were 
optimized using GridSearchCV, and the model was then trained with the best-found values. Evaluation metrics 
such as accuracy, precision, recall, F1 score, MCC, and AUC were computed after making predictions on the test 
set. A Confusion Matrix was also used to display the outcomes of the predictions. Figure 3 and Table VI display 
the findings. 
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Figure. 3. Confusion Matrix for Test II 

 
TABLE VI 

TEST RESULTS 
Test 

Model Accuracy Precision Recall F1 Score MCC AUC 

II 0.87 0.89 0.85 0.87 0.74 0.89 

 
The Confusion Matrix showed a significant improvement, with 94 true positives and 103 true negatives, and a 

reduction in false positives to 12 and false negatives to 17. The model's accuracy increased to 0.87, reflecting its 
ability to correctly classify 87% of the instances. The precision also improved markedly to 0.89, indicating that 
when the model predicted a defect, it was correct 89% of the time. The recall of 0.85 remained strong, showing 
that the model could detect the majority of defects, and the F1 Score of 0.87 confirmed a well-balanced model. The 
MCC of 0.74 highlights a strong positive correlation between the model’s predictions and the actual outcomes, 
demonstrating the effectiveness of combining a complex CNN architecture with AdaBoost. 

Compared to the baseline model, the Complex CNN + AdaBoost model showed a significant improvement across 
all evaluation metrics. The higher precision 0.89 and F1 Score 0.87 indicate that the model was better at correctly 
identifying defective instances without compromising the accuracy of non-defective classifications. The AUC of 
0.89 further emphasizes the model's robustness in distinguishing between defective and non-defective instances, 
which is crucial in SDP tasks where false positives can lead to significant wasted resources. The MCC of 0.74 and 
the accuracy of 0.87 underscore the model's balanced and effective classification process. 

When compared to previous studies, such as the work by Nasraldeen et al. (2023) that integrated CNN with GRU 
and SMOTE Tomek, the proposed model in this study achieved higher precision and recall, particularly in handling 
imbalanced datasets. This suggests that the combination of CNN with AdaBoost provides a more robust framework 
for SDP, especially in real-world scenarios where data imbalance is a significant challenge. 

 
3) Third Test (Proposed Model) 

The third test involved the More Complex CNN + AdaBoost model with SMOTE Tomek. Before being balanced 
using SMOTE Tomek, the dataset was imported and partitioned into features and labels. It was thereafter separated 
into training and testing sets and standardized with StandardScaler. To improve feature extraction capacity, a more 
sophisticated CNN model was built with more convolutional layers and batch normalization. After the CNN was 
trained, the AdaBoost model was trained using the characteristics it had extracted. In order to train the AdaBoost 
model with the most optimal hyperparameters, GridSearchCV was used to find them. On the test set, predictions 
were produced and the model's performance was evaluated using measures like recall, accuracy, precision, F1 
score, MCC, and AUC. Figure 4 and Table VII show the outcomes of the prediction process as depicted using a 
Confusion Matrix. 
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Figure. 4. Confusion Matrix for Test III 

 
TABLE VII 

TEST RESULTS 
Test 

Model Accuracy Precision Recall F1 Score MCC AUC 

III 0.82 0.74 0.95 0.83 0.66 0.91 

 
The third test yielded 103 true positives and 79 true negatives, but also recorded an increase in false positives 36 

and a decrease in false negatives 5. The model achieved an accuracy of 0.82, which, although slightly lower than 
the second test, still indicates strong performance. The precision of 0.74 was lower, suggesting more false positives, 
but the recall reached 0.95, the highest among the tests, indicating the model’s exceptional ability to identify 
defects. The F1 Score of 0.83 reflected a good balance between precision and recall, and the MCC of 0.66, though 
slightly lower than the second test, still indicated a strong correlation between the predicted and actual 
classifications. 

Although the third model introduced additional complexity, including more convolutional layers and batch 
normalization, the results indicated a trade-off. While the accuracy slightly decreased to 0.82, the recall 
significantly improved to 0.95, which is crucial in defect detection tasks where missing a defect can have severe 
consequences. This highlights the importance of selecting a model that aligns with the specific objectives of the 
SDP task. The high recall demonstrates the model's capability to identify almost all defective instances, making it 
suitable for scenarios where minimizing false negatives is critical. However, the slightly lower precision and 
accuracy suggest that this model may classify more non-defective instances as defective, which could lead to higher 
costs in terms of additional testing or revisions. 

This model's performance aligns with findings from Chen et al. (2022), who also noted that more complex models 
can offer higher recall at the cost of precision in imbalanced datasets . The choice between this model and the 
second test model depends on whether the emphasis is on minimizing false negatives (favoring the third model) or 
achieving a balance between precision and recall (favoring the second model). 

Table IX compares the operation of the three cases and contains the results of the tests that were run under various 
conditions. 

 
 

TABLE IX 
COMPARISON OF BASELINE MODEL AND PROPOSED MODELS 

Model Accuracy Precision Recall F1 Score MCC AUC 

CNN AdaBoost 
with SMOTE 

Tomek 
0.77 0.45 0.80 0.58 0.47 0.84 
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Complex CNN 
AdaBoost with 
SMOTE Tomek 

0.87 0.89 0.85 0.87 0.74 0.89 

More Complex 
CNN AdaBoost 
with SMOTE 

Tomek 

0.82 0.74 0.95 0.83 0.66 0.91 

 

IV. CONCLUSION 
The results indicate that both the Complex CNN AdaBoost with SMOTE Tomek (Proposed Model) and the More 

Complex CNN AdaBoost with SMOTE Tomek (Proposed Model) offer varied improvements compared to the 
CNN AdaBoost with SMOTE Tomek (Baseline Model). The Complex CNN AdaBoost model shows significant 
enhancements in Accuracy (0.87 vs. 0.77), Precision (0.89 vs. 0.45), and F1 Score (0.87 vs. 0.58), with an AUC 
increase (0.89 vs. 0.84), highlighting its superior ability to distinguish between defect and non-defect classes. The 
More Complex CNN AdaBoost model excels in Recall (0.95), making it highly effective in scenarios where 
detecting as many defects as possible is critical. Despite a slightly lower Precision (0.74 vs. 0.89) and Accuracy 
(0.82), its higher AUC (0.91) suggests a strong overall performance, particularly in differentiating between classes. 
The use of SMOTE Tomek reduces bias towards the majority class, enhancing the model's effectiveness in handling 
imbalanced datasets. If maximizing defect detection is the primary goal, the More Complex CNN AdaBoost model 
is preferable, while the Complex CNN AdaBoost model offers a better balance between Precision and Recall, 
making it more suitable for cases where both metrics are equally important. Overall, the study demonstrates that 
combining CNN and AdaBoost with SMOTE Tomek optimization significantly improves software defect 
prediction (SDP) performance. 
 

REFERENCES 
[1] Begum, M., Shuvo, M.H., Nasir, M.K., Hossain, A., Hossain, M.J., Ashraf, I., Uddin, J., Samad, M.A., “LCNN: Lightweight CNN Architecture for 

Software Defect Feature Identification Using Explainable AI,” IEEE Access, vol. 2024, no. 1, pp. 123-134, 2024. 
[2] Nasraldeen Alnor Adam Khleel, Károly Nehéz, “A Novel Approach for SDP Using CNN and GRU Based on SMOTE Tomek Method,” IEEE Access, 

vol. 2023, pp. 1-10, 2023. 
[3] Ramakrishna, M.T., Venkatesan, V.K., Izonin, I., Havryliuk, M., Bhat, C.R., “Homogeneous Adaboost Ensemble Machine Learning Algorithms with 

Reduced Entropy on Balanced Data,” Entropy, vol. 25, no. 2, pp. 245, 2023. 
[4] Ogunsanya, M., Isichei, D., Desai, M., “GridSearchCV Hyperparameter Tuning in Additive Manufacturing Processes,” Journal of Manufacturing 

Processes, vol. 2023, no. 3, pp. 432-445, 2023. 
[5] Hornyák, O., Iantovics, L.B., “AdaBoost Algorithm Could Lead to Weak Results for Data with Certain Characteristics,” Entropy, vol. 2023, no. 5, pp. 

789-800, 2023. 
[6] Giray, G., et al., “On the Use of Deep Learning in SDP,” Journal of Systems and Software, vol. 2023, no. 8, pp. 123-135, 2023. 
[7] Pachouly, J., et al., “A Systematic Literature Review on SDP Using Artificial Intelligence: Datasets, Data Validation Methods, Approaches, and 

Tools,” Information and Software Technology, vol. 2022, no. 7, pp. 567-579, 2022. 
[8] Chen, L.-q., et al., “SDP Based on Nested-Stacking and Heterogeneous Feature Selection,” Expert Systems with Applications, vol. 2022, no. 9, pp. 

345-356, 2022. 
[9] Uddin, M.N., Li, B., Ali, Z., Kefalas, P., Khan, I., Zada, I., “SDP Employing BiLSTM and BERT-based Semantic Feature,” Soft Computing, vol. 

2022, no. 7, pp. 1234-1245, 2022. 
[10] Alazba, A., Aljamaan, H., “SDP Using Stacking Generalization of Optimized Tree-Based Ensembles,” Applied Sciences, vol. 12, no. 9, pp. 4577, 

2022. 
[11] Al-Hadidi, T.N., Hasoon, S.O., "Software Defect Prediction Using Extreme Gradient Boosting (XGBoost) with Optimization Hyperparameter," Al-

Rafidain Journal of Computer Sciences and Mathematics, vol. 18, no. 1, pp. 22-29, 2024. 
[12] Yang, H., Li, M., "Software Defect Prediction Based on SMOTE-Tomek and XGBoost," Proceedings of the International Conference on Bio-Inspired 

Computing: Theories and Applications, pp. 12-31, 2021. 
[13] Arora, R., Kaur, A., "Heterogeneous Fault Prediction Using Feature Selection and Supervised Learning Algorithms," Vietnam Journal of Computer 

Science, pp. 1-24, 2022. 
[14] Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q., "A Survey on Ensemble Learning," Frontiers of Computer Science, vol. 14, pp. 241-258, 2020. 
[15] Iqbal, A., Aftab, S., Ullah, I., Bashir, M.S., Saeed, M.A., "A Feature Selection Based Ensemble Classification Framework for Software Defect Predic-

tion," International Journal of Modern Education and Computer Science, vol. 11, no. 9, p. 54, 2019. 
[16] Kumar, S., Behera, H.S., Nayak, J., Naik, B., "Bootstrap Aggregation Ensemble Learning-Based Reliable Approach for Software Defect Prediction by 

Using Characterized Code Feature," Innovation in Systems and Software Engineering, vol. 17, no. 4, pp. 355-379, 2021. 
[17] Ibrahim, A.M., Abdelsalam, H., Taj-Eddin, I.A.T.F., "Software Defects Prediction at Method Level Using Ensemble Learning Techniques," Interna-

tional Journal of Intelligent Computing and Information Sciences, vol. 23, no. 2, pp. 28-49, 2023. 
[18] Khuat, T.T., Le, M.H., "Evaluation of Sampling-Based Ensembles of Classifiers on Imbalanced Data for Software Defect Prediction Problems," SN 

Computer Science, vol. 1, no. 2, p. 108, 2020. 
[19] Menzies, T., Krishna, R., Pryor, D., "The Promise Repository of Empirical Software Engineering Data," North Carolina State University Department 

of Computer Science, 2015. 
[20] Zhang, T., Du, Q., Xu, J., Li, J., Li, X., "Software Defect Prediction and Localization with Attention-Based Models and Ensemble Learning," Proceed-

ings of the Asia-Pacific Software Engineering Conference (APSEC), vol. 2020, pp. 81-90, 2020. 

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

	I. Introduction
	II. Research Methodology
	A. Data Collection
	B. Data Preprocessing
	C. Justification for Method Selection
	D. Convolutional Neural Network (CNN)
	E. AdaBoost
	F. Parameter Optimization
	G. Model Evaluation

	III. Results and Discussion
	A. Dataset
	B. Data Split
	C. Convolutional Neural Network (CNN) dan AdaBoost

	IV. Conclusion
	References

