
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2046
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

OPTIMIZATION OF SOFTWARE DEFECT PREDICTION USING
CNN AND ADABOOST: ANALYSIS AND EVALUATION (JURNAL
ILMIAH PENELITIAN DAN PEMBELAJARAN INFORMATIKA)

Muhammad Abdul Basit *1), Arief Setyanto 2), Tonny Hidayat 3)
1. S2 Information Technology, University of Amikom Yogyakarta, Indonesia
2. S2 Information Technology, University of Amikom Yogyakarta, Indonesia
3. S2 Information Technology, University of Amikom Yogyakarta, Indonesia

Article Info ABSTRACT
KeyWords: CNN, AdaBoost, SMOTE
Tomek, SDP

Article history:
Received 12 Agustus 2024
Revised 20 September 2024
Accepted 3 Oktober 2024
Available online 1 September 2025

DOI :
https://doi.org/10.29100/jipi.v10i3.6405

* Corresponding author.
Corresponding Author
E-mail address:
muhabdulbasit21@gmail.com

This study focuses on enhancing software defect prediction (SDP) by in-
tegrating Convolutional Neural Networks (CNN) with the AdaBoost al-
gorithm. The PROMISE dataset was employed in this research, and data
balancing was achieved using the SMOTE Tomek technique. With the
help of AdaBoost, we were able to increase the prediction accuracy after
building a complex CNN model to extract features from the dataset. The
AdaBoost model's hyperparameters were fine-tuned using GridSearchCV
to find the best values for enhanced model performance. For the studies,
we used StandardScaler to normalize the data after splitting it into train-
ing and testing groups with an 80:20 ratio. The experimental results show
that compared to the baseline method, SDP accuracy significantly im-
proves when CNN, AdaBoost, and hyperparameter tuning on AdaBoost
using GridSearchCV are used together. Accuracy, precision, recall, F1
score, MCC, and AUC were some of the measures used to assess the
model's performance.

I. INTRODUCTION
n the rapidly evolving software industry, ensuring high software quality is essential. Software defects can lead
to significant issues, including financial losses, wasted time, and a damaged reputation. Therefore, early
detection of software defects is crucial to mitigate these problems.

Previous research by Begum et al. has explored various strategies to enhance the accuracy of Software Defect
Prediction (SDP). One such approach is the Lightweight Convolutional Neural Network (LCNN) architecture,
which employs Explainable AI (XAI) techniques like LIME and SHAP to improve model interpretability [1]. This
allows for a clearer understanding of model decisions and highlights key features that influence defect predictions.

However, despite these advancements, existing methods still face challenges in balancing accuracy,
interpretability, and handling imbalanced datasets. Recent studies, such as the one by Chen et al., introduced a more
sophisticated framework for software defect prediction using Nested-Stacking combined with heterogeneous
feature selection. This approach has been shown to improve prediction accuracy and effectively address data
imbalance issues on datasets like PROMISE and Kamei [2].

Moreover, research by Nasraldeen et al. demonstrated that integrating SMOTE Tomek with CNN and GRU can
significantly enhance defect prediction accuracy, particularly when dealing with imbalanced datasets. While
promising, these techniques still struggle with overfitting and require careful hyperparameter optimization [3].

In this study, we propose to address these limitations by combining CNN with the AdaBoost algorithm to
improve SDP accuracy. Our approach leverages the feature extraction capabilities of CNN along with the robust
performance enhancement provided by AdaBoost to reduce overfitting. Additionally, we employ SMOTE Tomek
to balance the PROMISE dataset prior to training, ensuring that the model remains unbiased towards the majority
class.

 This research offers a unique contribution by demonstrating how the combination of CNN and AdaBoost can
overcome the limitations of previous approaches. We also explore the effectiveness of using GridSearchCV for
hyperparameter tuning to optimize the performance of both CNN and AdaBoost, thereby addressing the gaps in
existing research related to model tuning and optimization.

The primary gap this study addresses is the lack of a comprehensive approach that effectively balances data,

I

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
https://doi.org/10.29100/jipi.v10i3.6405
mailto:muhabdulbasit21@gmail.com

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2047
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

optimizes model hyperparameters, and improves both accuracy and interpretability in SDP. By focusing on these
aspects, our research not only contributes to the academic field but also provides practical solutions that can be
applied in the software industry to enhance product quality.

II. RESEARCH METHODOLOGY
In this study, the following steps were taken to predict software defects:

A. Data Collection
Data was gathered through various sources, including platforms like the Kaggle website. These sources provided

the essential information regarding software metrics needed for SDP analysis. The dataset utilized in this study is
ant-1.7, which includes various software code metrics and defect labels.

B. Data Preprocessing
The data was cleaned and prepared for usage by going through a number of preparatory stages. The following

preprocessing steps were applied [2]:
1) Data Cleaning

To deal with missing data, we either removed it or used the feature's median or mean to impute the
missing values.

2) Normalization
The data was normalized to ensure consistency in scale. The normalization was performed using the

StandardScaler from sklearn, as formulated below:

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

(1)

Where 𝑋𝑋 is the feature, 𝜇𝜇 is the mean, and 𝜎𝜎 is the standard deviation.
3) Balancing

The SMOTE Tomek technique was employed to balance the class distribution within the training data.
SMOTE combines oversampling with the Tomek Links undersampling method to address class
imbalance in the dataset. The SMOTE formula is as follows:

xnew = xminority + λ ⋅ �xnearest − xminority�

(2)

Where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 is the synthetic sample, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the minority class sample, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the nearest
neighbor, and 𝜆𝜆 is a random number between 0 and 1.

4) Data Split
There are two distinct categories of pre-processed data: training data and testing data. The data was

divided in half, with 80% going into training and 20% into testing. This data division technique made
use of sklearn's train_test_split function.

C. Justification for Method Selection
The choice of CNN, AdaBoost, and SMOTE Tomek is grounded in their proven effectiveness in addressing key

challenges in software defect prediction:
1) CNN

CNN was selected for its ability to automatically extract and learn complex features from the input data,
which is crucial for capturing intricate patterns within software metrics. CNN's hierarchical structure
makes it ideal for modeling spatial relationships in data, similar to its use in image processing but adapted
here for software defect prediction.

2) Adaboost
AdaBoost was chosen for its strength in boosting weak learners, thereby improving model accuracy and

reducing overfitting. It combines multiple weak classifiers to form a strong classifier, making it
particularly effective in refining the predictions generated by the CNN model.

3) SMOTE Tomek
SMOTE Tomek was employed to tackle the class imbalance issue that commonly affects SDP datasets.

By generating synthetic samples for the minority class and removing borderline examples from the

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2048
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

majority class, this technique ensures a balanced dataset, which is crucial for training robust and unbiased
models.

D. Convolutional Neural Network (CNN)
1) Overview

Convolutional Neural Networks (CNNs) were originally designed to process data with a grid-like
arrangement, such as images, which inherently have a two-dimensional structure. However, CNNs have
been successfully adapted for various types of non-image data, including speech recognition and natural
language processing. These applications demonstrate the flexibility of CNNs in handling different types
of structured data by transforming them into a format suitable for convolutional processing.

In this study, the CNN architecture is used to process software metrics data, which is typically tabular
and does not naturally have a grid structure like images. To adapt this tabular data for CNN processing,
the data is transformed into a two-dimensional grid format, where each feature in the dataset corresponds
to a "pixel" or unit in this grid. This transformation allows the CNN to apply its convolutional layers
effectively, extracting complex patterns and relationships between the features.

The CNN model used in this research includes several key components, as illustrated in Figure 1 [2].

Figure. 1. CNN model for SDP

The architecture consists of convolutional, batch normalization, and max-pooling layers, which make

up the network's hidden layers. The max-pooling layers reduce the dimensionality of the feature space,
while the convolutional layers calculate the weights for the next layer based on specific filter and kernel
parameters. Batch normalization is applied to mitigate the impact of varying input distributions across
mini-batches, thereby enhancing the training process. Activation functions are employed to ensure that
the CNN model trains accurately and efficiently. Among the most commonly used activation functions
in CNNs are Sigmoid, ReLU, and Tanh. In this model, two activation functions are used: Sigmoid for
the output layer and ReLU for the input and hidden layers, as shown in the following equations.

ℎ𝑖𝑖𝑚𝑚 = ReLU(𝑊𝑊𝑖𝑖

𝑚𝑚−1 × 𝑉𝑉𝑖𝑖𝑚𝑚−1 + 𝑏𝑏𝑖𝑖𝑚𝑚−1)

(3)

Where ℎ𝑖𝑖𝑚𝑚 represents the convolutional layer, 𝑊𝑊𝑖𝑖
𝑚𝑚−1 represents the neuron weights, 𝑉𝑉𝑖𝑖𝑚𝑚−1 represents

the nodes, and 𝑏𝑏𝑖𝑖𝑚𝑚−1 represents the bias layer.

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−∑ 𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘 +𝑏𝑏

(4)

Where 𝑥𝑥𝑖𝑖 is the input, 𝑊𝑊𝑖𝑖 is the input weight, 𝑒𝑒 is Euler's number (e =2.718...), and 𝑏𝑏 is the bias.

2) Complex CNN
For more complicated data management, there is an improved variant of the classic CNN called the

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2049
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

Complex CNN. Its capacity to extract useful characteristics from data is enhanced by the incorporation
of several more layers and features. Here are some improvements:

a) More Convolutional Layers
Complex CNN utilizes more convolutional layers than the basic CNN, enabling deeper and

more complex feature extraction.
b) Diverse Pooling Layers

In addition to max pooling, Complex CNN can use average pooling to reduce data
dimensionality and prevent overfitting.

c) Intensive Batch Normalization
Batch normalization is applied after each convolutional layer to stabilize input distributions

and speed up training.
d) Extensive Dropout

Dropout is extensively used after each convolutional and dense layer to prevent overfitting.
e) Varied Activation Functions

In addition to ReLU and Sigmoid, Complex CNN can use other activation functions like
Leaky ReLU or ELU to address different data issues.

f) Complex Optimization
Complex CNN uses advanced optimizers such as Adam or RMSprop and regularization

techniques like L2 to improve model performance.
g) Use of Residual Connections

Certain Complex CNNs incorporate residual connections, inspired by ResNet, to mitigate
the vanishing gradient issue and facilitate deeper learning within the model.

E. AdaBoost
After features are extracted using CNN, AdaBoost is used to enhance model performance and reduce overfitting.

The best parameters for AdaBoost are determined using GridSearchCV with the following parameter grid: [3][4]

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 = {′𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′: [50,100,200], ′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′: [0.01,0.1,1.0]} (5)

AdaBoost is implemented with the formula:

𝐹𝐹𝑚𝑚(𝑥𝑥) = sign�� α𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)
𝑀𝑀

𝑚𝑚=1

�

(6)

Where 𝐹𝐹𝑚𝑚(𝑥𝑥) is the final model, 𝛼𝛼𝑚𝑚 is the weight of m-th model, and ℎ𝑚𝑚(𝑥𝑥) is the mmm-th predictive model.

F. Parameter Optimization
The parameters for AdaBoost, such as n_estimators and learning_rate, were fine-tuned using GridSearchCV.

This allowed for systematic exploration of various parameter combinations to identify the configuration that
maximized model performance while minimizing overfitting. The best parameters were then used to train the final
AdaBoost model on the features extracted by the CNN.

G. Model Evaluation
Precision, accuracy, recall, F1 score, MCC, and AUC are some of the measures used to evaluate the model. You

can not evaluate the model's performance in forecasting software problems without these measures. The steps of
the study procedure are laid forth in Table I.

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2050
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

III. RESULTS AND DISCUSSION

A. Dataset
The PROMISE dataset was used to test the SDP model. Table II provides a description of the selected dataset,

the "ant" project version 1.7, with 745 samples and a defect rate of 22.28%. This dataset consists of various software
metrics listed in Table III, which are used to train and test the CNN model used in this research. The use of this
dataset allows for evaluating the accuracy and effectiveness of the model in identifying software defects.

TABLE II

DESCRIPTION OF PROMISE DATASET
Project
Name Project Version # Number of Instances Defect Rate %

ant 1.7 745 22.28%

TABLE III
LIST OF STATIC METRICS IN PROMISE DATASET

Attribute Description

LOC (Lines of Code) Number of lines of code in the code unit

CYCLO (Cyclomatic
Complexity)

Cyclomatic complexity of the code, which reflects the number of in-
dependent paths in the code

CLASS Class name in unit code

TABLE I
RESEARCH FLOW

Step Activities Description

Data Collection Data Retrieval Collecting dataset from Kaggle.

Pre-Processing Oversampling Using SMOTE to address data imbalance.

Split Data Splitting data into 80% training, 10% validation,
and 10% testing.

Machine Learning
Pipeline

Convolutional Neu-
ral Network (CNN)

Using CNN to extract complex features from soft-
ware data.

AdaBoost Using AdaBoost to improve CNN model perfor-
mance and reduce overfitting. Determining the
best parameters for AdaBoost using
GridSearchCV.

Evaluation Model Evalution Evaluating model performance using metrics such
as accuracy, precision, recall, F1-score, MCC, and
AUC.

Results Evaluation
and Analysis

Analysis of Evalua-
tion Results

Analyzing evaluation results to assess the effec-
tiveness of the model in predicting software de-
fects.

Discussion and Con-
clusion

Discussion and
Conclusion

Discussing and drawing conclusions from re-
search results.

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2051
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

WMC (Weighted
Methods per Class) Total number of method complexities in the class

DIT (Depth of Inher-
itance Tree) The depth of the inheritance tree for the class

NOC (Number of
Children) The number of derived classes of the class

CBO (Coupling Be-
tween Objects) The number of other objects that are joined by the class

RFC (Response for a
Class) The number of methods that can be called by the class

LCOM (Lack of Co-
hesion in Methods) Level of cohesion between in-class methods

BUG Label indicating whether the code unit contains a defect (1) or not (0)

B. Data Split
After data is collected and prepared, it needs to be split into training, validation, and testing sets to ensure an

objective evaluation of the model. When it comes to training, validation, and testing, the ratio is 80/20. The training
set is used to train the model, the validation set to fine-tune the hyperparameters and avoid overfitting, and the test
set to assess the model. For consistent scaling, data is normalized using StandardScaler, and data is divided using
the train_test_split function from the sklearn package. This process ensures that the model is trained and evaluated
effectively, providing an accurate estimate of its performance on unseen data.

C. Convolutional Neural Network (CNN) dan AdaBoost
Three models were tested: one baseline model (serving as a comparison point) and two proposed models (new

models proposed to improve accuracy). Precision, Accuracy, Recall, F1 Score, MCC, and AUC were some of the
assessment measures that exhibited diversity in the test findings. Table IV below displays the outcomes.

TABLE IV

LIST OF TEST MODEL

Test Structure Description

I CNN AdaBoost with SMOTE Tomek Baseline Model

II Complex CNN AdaBoost with SMOTE Tomek Proposed Model

III More Complex CNN AdaBoost with SMOTE Tomek Proposed Model

1) First Test (Baseline Model)

Using SMOTE Tomek and the CNN + AdaBoost model, the first test was conducted. After loading, the dataset
was partitioned into labels and features. A training set and a testing set were subsequently created from the data.
The training set was subjected to the SMOTE Tomek approach in order to rectify the data imbalance. In order to
get features out of the balanced data, the CNN model was then constructed. The AdaBoost model was trained to
make predictions using the features produced by CNN as input. To evaluate the model's performance, predictions
were performed on the test set after training. Evaluation measures including recall, accuracy, precision, F1 score,

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2052
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

MCC, and AUC were computed. A Confusion Matrix was also used to display the outcomes of the predictions.
Figure 2 and Table V display the findings.

Figure. 2. Confusion Matrix for Test I

TABLE V

TEST RESULTS
Test

Model Accuracy Precision Recall F1 Score MCC AUC

I 0.77 0.45 0.80 0.58 0.47 0.84

The Confusion Matrix revealed that the baseline model correctly classified 24 true positives and 90 true

negatives, but it also produced 29 false positives and 6 false negatives. The accuracy of 0.77 indicates that the
model correctly predicted 77% of all instances. However, the precision of 0.45 suggests that when the model
predicted a defect, it was correct only 45% of the time, indicating a high false positive rate. The recall of 0.80
shows that the model successfully identified 80% of actual defects, but the low precision led to a lower F1 Score
of 0.58. The MCC of 0.47 indicates a moderate level of agreement between the actual and predicted classifications,
signaling room for improvement in the model's performance.

These metrics showed that while the baseline model achieved reasonable accuracy, there were notable
weaknesses in precision and F1 Score, indicating that the model struggled with correctly identifying defective
instances without sacrificing the accuracy of non-defective instances. This provided a clear motivation to explore
more sophisticated models.

2) Second Test (Proposed Model)

The second test utilized the Complex CNN + AdaBoost model with SMOTE Tomek. The dataset was loaded and
divided into features and labels, then balanced using SMOTE Tomek. Following data normalization using
StandardScaler, the balanced dataset was divided into a training set and a testing set. Convolutional, pooling, and
dropout layers were added to a more intricate CNN model in order to avoid overfitting. Following CNN training,
the AdaBoost model was trained using the retrieved features. The hyperparameters of the AdaBoost model were
optimized using GridSearchCV, and the model was then trained with the best-found values. Evaluation metrics
such as accuracy, precision, recall, F1 score, MCC, and AUC were computed after making predictions on the test
set. A Confusion Matrix was also used to display the outcomes of the predictions. Figure 3 and Table VI display
the findings.

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2053
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

Figure. 3. Confusion Matrix for Test II

TABLE VI

TEST RESULTS
Test

Model Accuracy Precision Recall F1 Score MCC AUC

II 0.87 0.89 0.85 0.87 0.74 0.89

The Confusion Matrix showed a significant improvement, with 94 true positives and 103 true negatives, and a

reduction in false positives to 12 and false negatives to 17. The model's accuracy increased to 0.87, reflecting its
ability to correctly classify 87% of the instances. The precision also improved markedly to 0.89, indicating that
when the model predicted a defect, it was correct 89% of the time. The recall of 0.85 remained strong, showing
that the model could detect the majority of defects, and the F1 Score of 0.87 confirmed a well-balanced model. The
MCC of 0.74 highlights a strong positive correlation between the model’s predictions and the actual outcomes,
demonstrating the effectiveness of combining a complex CNN architecture with AdaBoost.

Compared to the baseline model, the Complex CNN + AdaBoost model showed a significant improvement across
all evaluation metrics. The higher precision 0.89 and F1 Score 0.87 indicate that the model was better at correctly
identifying defective instances without compromising the accuracy of non-defective classifications. The AUC of
0.89 further emphasizes the model's robustness in distinguishing between defective and non-defective instances,
which is crucial in SDP tasks where false positives can lead to significant wasted resources. The MCC of 0.74 and
the accuracy of 0.87 underscore the model's balanced and effective classification process.

When compared to previous studies, such as the work by Nasraldeen et al. (2023) that integrated CNN with GRU
and SMOTE Tomek, the proposed model in this study achieved higher precision and recall, particularly in handling
imbalanced datasets. This suggests that the combination of CNN with AdaBoost provides a more robust framework
for SDP, especially in real-world scenarios where data imbalance is a significant challenge.

3) Third Test (Proposed Model)

The third test involved the More Complex CNN + AdaBoost model with SMOTE Tomek. Before being balanced
using SMOTE Tomek, the dataset was imported and partitioned into features and labels. It was thereafter separated
into training and testing sets and standardized with StandardScaler. To improve feature extraction capacity, a more
sophisticated CNN model was built with more convolutional layers and batch normalization. After the CNN was
trained, the AdaBoost model was trained using the characteristics it had extracted. In order to train the AdaBoost
model with the most optimal hyperparameters, GridSearchCV was used to find them. On the test set, predictions
were produced and the model's performance was evaluated using measures like recall, accuracy, precision, F1
score, MCC, and AUC. Figure 4 and Table VII show the outcomes of the prediction process as depicted using a
Confusion Matrix.

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2054
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

Figure. 4. Confusion Matrix for Test III

TABLE VII

TEST RESULTS
Test

Model Accuracy Precision Recall F1 Score MCC AUC

III 0.82 0.74 0.95 0.83 0.66 0.91

The third test yielded 103 true positives and 79 true negatives, but also recorded an increase in false positives 36

and a decrease in false negatives 5. The model achieved an accuracy of 0.82, which, although slightly lower than
the second test, still indicates strong performance. The precision of 0.74 was lower, suggesting more false positives,
but the recall reached 0.95, the highest among the tests, indicating the model’s exceptional ability to identify
defects. The F1 Score of 0.83 reflected a good balance between precision and recall, and the MCC of 0.66, though
slightly lower than the second test, still indicated a strong correlation between the predicted and actual
classifications.

Although the third model introduced additional complexity, including more convolutional layers and batch
normalization, the results indicated a trade-off. While the accuracy slightly decreased to 0.82, the recall
significantly improved to 0.95, which is crucial in defect detection tasks where missing a defect can have severe
consequences. This highlights the importance of selecting a model that aligns with the specific objectives of the
SDP task. The high recall demonstrates the model's capability to identify almost all defective instances, making it
suitable for scenarios where minimizing false negatives is critical. However, the slightly lower precision and
accuracy suggest that this model may classify more non-defective instances as defective, which could lead to higher
costs in terms of additional testing or revisions.

This model's performance aligns with findings from Chen et al. (2022), who also noted that more complex models
can offer higher recall at the cost of precision in imbalanced datasets . The choice between this model and the
second test model depends on whether the emphasis is on minimizing false negatives (favoring the third model) or
achieving a balance between precision and recall (favoring the second model).

Table IX compares the operation of the three cases and contains the results of the tests that were run under various
conditions.

TABLE IX
COMPARISON OF BASELINE MODEL AND PROPOSED MODELS

Model Accuracy Precision Recall F1 Score MCC AUC

CNN AdaBoost
with SMOTE

Tomek
0.77 0.45 0.80 0.58 0.47 0.84

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi

ISSN: 2540-8984
Vol. 10, No. 3, September 2025, Pp. 2046-2055

2055
Optimization of Software Defect Prediction Using CNN and AdaBoost: Analysis and Evaluation

Complex CNN
AdaBoost with
SMOTE Tomek

0.87 0.89 0.85 0.87 0.74 0.89

More Complex
CNN AdaBoost
with SMOTE

Tomek

0.82 0.74 0.95 0.83 0.66 0.91

IV. CONCLUSION
The results indicate that both the Complex CNN AdaBoost with SMOTE Tomek (Proposed Model) and the More

Complex CNN AdaBoost with SMOTE Tomek (Proposed Model) offer varied improvements compared to the
CNN AdaBoost with SMOTE Tomek (Baseline Model). The Complex CNN AdaBoost model shows significant
enhancements in Accuracy (0.87 vs. 0.77), Precision (0.89 vs. 0.45), and F1 Score (0.87 vs. 0.58), with an AUC
increase (0.89 vs. 0.84), highlighting its superior ability to distinguish between defect and non-defect classes. The
More Complex CNN AdaBoost model excels in Recall (0.95), making it highly effective in scenarios where
detecting as many defects as possible is critical. Despite a slightly lower Precision (0.74 vs. 0.89) and Accuracy
(0.82), its higher AUC (0.91) suggests a strong overall performance, particularly in differentiating between classes.
The use of SMOTE Tomek reduces bias towards the majority class, enhancing the model's effectiveness in handling
imbalanced datasets. If maximizing defect detection is the primary goal, the More Complex CNN AdaBoost model
is preferable, while the Complex CNN AdaBoost model offers a better balance between Precision and Recall,
making it more suitable for cases where both metrics are equally important. Overall, the study demonstrates that
combining CNN and AdaBoost with SMOTE Tomek optimization significantly improves software defect
prediction (SDP) performance.

REFERENCES
[1] Begum, M., Shuvo, M.H., Nasir, M.K., Hossain, A., Hossain, M.J., Ashraf, I., Uddin, J., Samad, M.A., “LCNN: Lightweight CNN Architecture for

Software Defect Feature Identification Using Explainable AI,” IEEE Access, vol. 2024, no. 1, pp. 123-134, 2024.
[2] Nasraldeen Alnor Adam Khleel, Károly Nehéz, “A Novel Approach for SDP Using CNN and GRU Based on SMOTE Tomek Method,” IEEE Access,

vol. 2023, pp. 1-10, 2023.
[3] Ramakrishna, M.T., Venkatesan, V.K., Izonin, I., Havryliuk, M., Bhat, C.R., “Homogeneous Adaboost Ensemble Machine Learning Algorithms with

Reduced Entropy on Balanced Data,” Entropy, vol. 25, no. 2, pp. 245, 2023.
[4] Ogunsanya, M., Isichei, D., Desai, M., “GridSearchCV Hyperparameter Tuning in Additive Manufacturing Processes,” Journal of Manufacturing

Processes, vol. 2023, no. 3, pp. 432-445, 2023.
[5] Hornyák, O., Iantovics, L.B., “AdaBoost Algorithm Could Lead to Weak Results for Data with Certain Characteristics,” Entropy, vol. 2023, no. 5, pp.

789-800, 2023.
[6] Giray, G., et al., “On the Use of Deep Learning in SDP,” Journal of Systems and Software, vol. 2023, no. 8, pp. 123-135, 2023.
[7] Pachouly, J., et al., “A Systematic Literature Review on SDP Using Artificial Intelligence: Datasets, Data Validation Methods, Approaches, and

Tools,” Information and Software Technology, vol. 2022, no. 7, pp. 567-579, 2022.
[8] Chen, L.-q., et al., “SDP Based on Nested-Stacking and Heterogeneous Feature Selection,” Expert Systems with Applications, vol. 2022, no. 9, pp.

345-356, 2022.
[9] Uddin, M.N., Li, B., Ali, Z., Kefalas, P., Khan, I., Zada, I., “SDP Employing BiLSTM and BERT-based Semantic Feature,” Soft Computing, vol.

2022, no. 7, pp. 1234-1245, 2022.
[10] Alazba, A., Aljamaan, H., “SDP Using Stacking Generalization of Optimized Tree-Based Ensembles,” Applied Sciences, vol. 12, no. 9, pp. 4577,

2022.
[11] Al-Hadidi, T.N., Hasoon, S.O., "Software Defect Prediction Using Extreme Gradient Boosting (XGBoost) with Optimization Hyperparameter," Al-

Rafidain Journal of Computer Sciences and Mathematics, vol. 18, no. 1, pp. 22-29, 2024.
[12] Yang, H., Li, M., "Software Defect Prediction Based on SMOTE-Tomek and XGBoost," Proceedings of the International Conference on Bio-Inspired

Computing: Theories and Applications, pp. 12-31, 2021.
[13] Arora, R., Kaur, A., "Heterogeneous Fault Prediction Using Feature Selection and Supervised Learning Algorithms," Vietnam Journal of Computer

Science, pp. 1-24, 2022.
[14] Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q., "A Survey on Ensemble Learning," Frontiers of Computer Science, vol. 14, pp. 241-258, 2020.
[15] Iqbal, A., Aftab, S., Ullah, I., Bashir, M.S., Saeed, M.A., "A Feature Selection Based Ensemble Classification Framework for Software Defect Predic-

tion," International Journal of Modern Education and Computer Science, vol. 11, no. 9, p. 54, 2019.
[16] Kumar, S., Behera, H.S., Nayak, J., Naik, B., "Bootstrap Aggregation Ensemble Learning-Based Reliable Approach for Software Defect Prediction by

Using Characterized Code Feature," Innovation in Systems and Software Engineering, vol. 17, no. 4, pp. 355-379, 2021.
[17] Ibrahim, A.M., Abdelsalam, H., Taj-Eddin, I.A.T.F., "Software Defects Prediction at Method Level Using Ensemble Learning Techniques," Interna-

tional Journal of Intelligent Computing and Information Sciences, vol. 23, no. 2, pp. 28-49, 2023.
[18] Khuat, T.T., Le, M.H., "Evaluation of Sampling-Based Ensembles of Classifiers on Imbalanced Data for Software Defect Prediction Problems," SN

Computer Science, vol. 1, no. 2, p. 108, 2020.
[19] Menzies, T., Krishna, R., Pryor, D., "The Promise Repository of Empirical Software Engineering Data," North Carolina State University Department

of Computer Science, 2015.
[20] Zhang, T., Du, Q., Xu, J., Li, J., Li, X., "Software Defect Prediction and Localization with Attention-Based Models and Ensemble Learning," Proceed-

ings of the Asia-Pacific Software Engineering Conference (APSEC), vol. 2020, pp. 81-90, 2020.

https://jurnal.stkippgritulungagung.ac.id/index.php/jipi
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016

	I. Introduction
	II. Research Methodology
	A. Data Collection
	B. Data Preprocessing
	C. Justification for Method Selection
	D. Convolutional Neural Network (CNN)
	E. AdaBoost
	F. Parameter Optimization
	G. Model Evaluation

	III. Results and Discussion
	A. Dataset
	B. Data Split
	C. Convolutional Neural Network (CNN) dan AdaBoost

	IV. Conclusion
	References

