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Iterative-based software development has been frequently implemented in 
working environment. A modern era software project demands that the 
product is delivered on every sprint development. Hence, the execution of 
a sprint requires ample supervision and capabilities to deliver a high quality 
product at the end of the software project development. This research’s 
purpose is to give support for a software project’s supervisor or owner in 
predicting the end product’s capability by knowing the performance level 
of each sprint. The method proposed for this purpose is to build a prediction 
model utilizing a number of features in a form of characteristics from a 
dataset containing software project iterations. The proposed model is built 
using Random Forest Regressor as a main method, with KNN (K-Nearest 
Neighbors) and Decision Tree Regressor being the comparison methods. 
Testing results show that compared to KNN and Decision Tree, Random 
Forest Regressor yields the best performance through its steady results on 
every stage progression of all tested software projects. 
 

I. INTRODUCTION 

ODERN software development of today is often based on an iterative-based approach where the 
software is developed and tested in an iterative cycle known as sprints [1]. This approach benefits the 
developer because the end product will always get inputs or feedback from previous study results. This 

is one of the implementations [2] of sprints. Sprints are the end results of Scrum [3] [4] [5] which is one of the most 
widely used software development methods. 

However, there is always uncertainty [6] in software development projects. Due to the dynamic nature of the 
work, through constant changes and inputs to sprints, changes to product requirements can occur. Some other 
examples of its uncertainties are the possibilities of having late sprint deliveries or excessive use of budgets [7] in 
the development of said software project. To deal with this, careful planning, progress monitoring, and constant 
interactions regarding project risk identification [7] [8] with the Scrum team [9] and customers are essential in 
iterative-based software development. 
 This study focuses on the ability of the prediction model to predict the level of sprint delivery in the form of 
performance levels of each software projects at certain intervals. Predictions are given based on available features 
or issues in a sprint which includes several matters such as work duration, change logs [7], scale of work and also 
the status of a sprint [7]. By studying the characteristics of features that may affect the performance of each sprint, 
a prediction model is built to predict whether the execution of a software project is able to achieve the specified 
work target. 
 Our study is loosely based on similar studies regarding software development projects. Our references are studies 
in software projects regarding effort and duration estimation of a project [10], story points estimation [11], and a 
prediction of bug fixing time [12]. There is also a prediction of delivery capabilities [7] that utilized a directed 
acyclic graph formed from the dependencies of one or more issues that blocked the resolving of another issue in a 
sprint.  

However, unlike the previously mentioned study regarding delivery capability prediction [7], our study did not 
utilize the dependencies of issues. This obstacle is due to constraints met on both research time and the absence of 
issue dependencies on the obtained dataset [7]. Instead, we are building a simpler prediction model using 
parameters in the form of available features with the highest correlation value. The utilization of a simpler model 
is done with the thought of giving an alternative option by giving out another method on how to predict the 
performance level of a software project. 

M
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Hence, this study focuses on predicting whether the given work target can be achieved at the end of each stage 
progression of the software project. Through the prediction results, the project owner or supervisor can find out 
how much the project development performs at each stage of its working progress. By knowing the level of 
performance at each interval, the owner or supervisor can estimate the quality of work that can be achieved in the 
overall result of the software project. 

II. RESEARCH METHODOLOGY 

A. System Workflow 

The workflow of the built prediction system begins with data preprocessing. Preprocessing is initiated by deleting 
unnecessary columns. Then some columns containing categorical data type are encoded into numerical data type. 
After that, the iteration dataset is aggregated with the issue dataset. The preprocessed data will then be used to build 
a prediction model. Figure 1 displays our system’s workflow. 

 

 
Fig 1. System Workflow 

B. Dataset 

 The dataset used in this study is the dataset developed by [7] [8] [13] [11] in their respective research topics relating to 
software projects. The dataset consists of 3 groups of data, namely datasets regarding agile sprints, delayed issues, and story 
points estimation. In this study, the dataset that will be used is the agile sprints dataset. The sprint data used are data of iterations 
and issues from Apache, JBoss, and Spring software projects. The dataset consists of sprints and issues on three stage 
progressions, specifically 30%, 50%, and 80% of each project’s progression. 

Each project’s sprint numbers are listed as follows, Apache project consists of 347 sprints with 5826 issues in its life cycle. 
JBoss project has 352 sprints with 4984 issues, and the Spring project’s life cycle consists of 476 sprints with 17497 issues. 
Table 1 displays the used features from the iterations dataset. Table 2 displays the used features from the issues dataset. 

 
TABLE I 

USED FEATURES FROM THE ITERATIONS DATASET 

Features Description 
planday The number of days from the sprint’s start date to planned 

completion date  
vel_diff The difference of a sprint’s committed story points to the sprint’s 

targeted story points  
vel_starttime The sum of story points of issues assigned at the beginning of a 

sprint 
vel_todo The sum of story points of a sprint’s to-do issues  
vel_added The sum of story points of issues added during a sprint’s duration 
vel_inprogress The sum of story points of in-progress issues of a sprint 
vel_done The sum of story points of resolved issues 
vel_removed The sum of story points of issues removed during a sprint’s duration 
no_issue_starttime The number of issues assigned at the beginning of a sprint 
no_issue_todo The number of to-do issues in a sprint 
no_issue_added The number of issues added during a sprint’s duration 
no_issue_inprogress The number of in-progress issues in a sprint 
no_issuedone The number of resolved issues in a sprint 
no_issue_removed The number of removed issues during a sprint’s duration 
no_teammember The number of team members working on a sprint 

 
TABLE II 

USED FEATURES FROM THE ISSUES DATASET 

Features Description 
type A sprint’s issue type 
priority The priority level of an issue 
no_comment The number of comments 
no_priority_change The number of times an issues’ priority level is changed 
no_des_change The number of times an issues’ description is changed 

C. Data Preprocessing 

Data preprocessing is done with the purpose of cleaning and preparing the data so that the data can be used to build the 
required prediction model. In this section, the dimensions of said data are reduced so that there is no data redundancy in the 
dataset used. Here are the steps of the data preprocessing: 
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Step 1. Remove any unnecessary columns. 
 

Step 2. Encode the categorical data type contained in “type” and “priority” columns into a numerical data 
type. The data in “type” column is encoded into binary values corresponding to a sprint’s respective issue 
type. As for the “priority” column’s encoding, it is represented in Table 3 shown below.  

 
TABLE III 

ENCODED RESULTS OF “PRIORITY” COLUMN 

Pre-encoded Post-encoded 
Trivial 1 
Minor 2 
Major 3 

Critical 4 
Blocker 5 

 
 

Step 3. Aggregate the features from both iterations and issues dataset. 
 

Step 4. Determine the importance levels of features to the prediction model’s targeted feature, namely the “vel_diff” 
column. 

 
Step 5. Determine the correlation of each feature. Features with a low correlation index value will not be used in the 
building of the prediction model. Used features’ correlation levels are shown in Figure 2 to Figure 4. 

 
Fig 2. An example of correlation levels of used features in Apache software project 
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Fig 3. An example of correlation levels of used features in JBoss software project 

 

 
Fig 4. An example of correlation levels of used features in Spring software project 

 
Step 6. Split the aggregated data into three parts, namely training data, validation data, and testing data 

 

The steps mentioned above yields an aggregated dataset containing features from both the iterations and issues 
dataset. The data will then be used for training and testing the suggested prediction model. 
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D. Building the Prediction Model 

 The suggested model is built to predict the level of sprint delivery from a software project. Three prediction 
models are built using three different methods. The main method used for building the model is Random Forest [7] 
[14] [15] Regressor. The other two methods used are KNN (K-Nearest Neighbors) [16] [17] and Decision Tree 
[18] [19] Regressor. Three models are built with the purpose of testing the influence of data dimensions as well as 
testing the overall effectiveness of each algorithm to determine which model performs the best. 
 

Aggregated features from the data are fed into a regressor in which said features are used as parameters of the 
prediction model. The earlier preprocessing is done so that the parameters used in the prediction model built with 
each of the three methods will have reduced chances of overfitting when the data is evaluated in the validation set. 
In turn, the prediction model built with the testing set will be ensured to have similar or better results compared to 
the evaluated results on the validation set. The prediction is done in three stages in which said stages are each 
software projects’ stage of progression, the said stage progressions being each project’s progress at 30%, 50%, and 
80% of work. 

 
There is also a categorization regarding each projects’ level of sprint delivery. A sprint is considered successful 

if the value contained in “vel_diff” column is greater than or equal to zero. The levels of sprint deliveries are 
categorized as such: 

  
Underachieved : value of “vel_diff” is less than zero 
On Target   : value of “vel_diff” is equal to zero 
Overachieved : value of “vel_diff” is greater than zero 

The expected output of the prediction model is each model’s level of accuracy as well as the performance levels 
of sprints done by the three tested software projects. Results from each prediction model and each performance 
level are then compared to one another to determine the best performing algorithm and the best performing software 
project. 

III. RESULTS AND DISCUSSIONS 

Here are the tables representing the test results displaying each model’s accuracy level as well as each software 
project’s sprint deliveries. Table 4 to Table 6 displays the accuracy level of each prediction model across the three 
tested software projects. The sprint deliveries of each software project are shown on Table 7 to Table 9. 

 
TABLE IV 

ACCURACY LEVELS ON 30% OF PROJECT PROGRESSION 

 Random Forest Regressor K-Nearest Neighbors Decision Tree Regressor 
Apache 0.778 0.693 0.791 
JBoss 0.780 0.688 0.716 
Spring 0.845 0.621 0.686 

 
TABLE V 

ACCURACY LEVELS ON 50% OF PROJECT PROGRESSION 

 Random Forest Regressor K-Nearest Neighbors Decision Tree Regressor 
Apache 0.797 0.718 0.797 
JBoss 0.841 0.563 0.501 
Spring 0.837 0.650 0.451 

 
TABLE VI 

ACCURACY LEVELS ON 80% OF PROJECT PROGRESSION 

 Random Forest Regressor K-Nearest Neighbors Decision Tree Regressor 
Apache 0.779 0.794 0.715 
JBoss 0.780 0.717 0.555 
Spring 0.819 0.582 0.350 

 
The results on Table 4 to Table 6 showed that the model built using Random Forest Regressor manages to give 

out consistent test results. With values ranging from 0.778 up to 0.841, that means the model yields a commendable 
performance with an accuracy level of about 77% up to 84% across each stage progression of all software projects. 
As for the KNN method, it showed fluctuating results across both JBoss and Spring projects with an accuracy level 
going as low as 0.56 and 0.58. However, the method performs quite well on Apache project, shown by its steady 
increase of accuracy levels spanning across the stage progressions.  
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The model built using Decision Tree gives out declining results through each stage progressions of all tested 

software projects. While the decline of accuracy levels in Apache project is moderate at best, the results in both 
JBoss and Spring projects show a more significant decline. The model yields an accuracy level ranging from as 
high as 0.716 to as low as 0.350. Performances from both KNN and Decision Tree Regressor may be considered 
average at best. 

 
Results shown above can be attributed to several reasons. Namely the influence of data dimensions, especially 

the dimensions of the issues dataset may have been the main factor that had affected the performance of the 
prediction model built using KNN. Then, for the Decision Tree’s results, those may be attributed to its inadequacy 
for applying regression as well as the complexity of data features that may have hindered its overall performance 
across all three stage progressions of both JBoss and Spring software projects. 
 

TABLE VII 
SPRINT DELIVERIES OF APACHE SOFTWARE PROJECT 

Progress Underachieved On Target Overachieved 
30% 243 46 58 
50% 251 45 51 
80% 263 42 42 

 
TABLE VIII  

SPRINT DELIVERIES OF JBOSS SOFTWARE PROJECT 

Progress Underachieved On Target Overachieved 
30% 210 96 46 
50% 217 94 41 
80% 225 101 26 

 
TABLE IX 

SPRINT DELIVERIES OF SPRING SOFTWARE PROJECT 

Progress Underachieved On Target Overachieved 
30% 118 34 324 
50% 131 48 297 
80% 155 65 256 

 
 
Results on Table 7 to Table 9 have shown that across all three tested software projects, the best software project 

delivery is achieved by Spring project. The numbers on both Apache and JBoss projects showed that both of these 
projects have mostly underachieving sprint deliveries. Across 347 and 352 sprints, each of these two projects have 
over 200 underachieving sprints in every stage progression. However, the Spring project performed quite 
admirably. Across 476 sprints and three stages of progression, at least over 300 sprints managed to either fulfill or 
even surpass the minimum working target. 
 
 It has to be noted that the results obtained on this research were gained through a simpler approach based on a 
previous study [7]. Although the dataset used is indeed from a similar [7] study, shown by the data of software 
projects we used in this research, the previously said constraints regarding the lack of issue dependencies are still 
influential to the results. Therefore, a different method must be implemented to build our suggested prediction 
model. Thus, it is not feasible to have a direct comparison of test results due to the difference of conditions occured 
between this study and the previous one.   

IV. CONCLUSION 

In this study, we were able to implement our suggested prediction models in an environment of iterative-based 
software development. The models were created using three methods, namely Random Forest Regressor as our 
main method, with KNN and Decision Tree Regressor being the comparison methods. The results of the test have 
shown that the Random Forest Regressor is the best performing algorithm. In addition, the performance of each 
sprint in the three software projects tested, namely Apache, JBoss, and Spring were also obtained. Through the 
results of performance levels from each sprint of the three software projects, it was found that most of the sprints 
in the Spring project were able to fulfill and/or surpass the minimum target. This shows that the Spring project is 
the software project with the best sprint delivery rate. 
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It should be noted that in the test results, there were several occasions where results from both KNN and Decision 
Tree Regressor that were able to exceed the performance levels of the model built with Random Forest Regressor. 
However, the steady performance of Random Forest Regressor at every stage progression of all tested software 
projects indicates that this algorithm is better for use in the building of prediction models. Therefore, although this 
model does not yield the best results, the results obtained by our prediction system still allowed it to be applied in 
an environment of iterative-based software development. For future work suggestions, this research can be further 
developed to achieve a more optimum result. For example, by testing the performance of the prediction model from 
this research on other software project data, or by optimizing the data preprocessing done in this study, or even try 
to build another prediction model using a combination of ensemble learning methods such as Random Forest and 
Deep Neural Networks. 
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