PROFIL METAKOGNISI SISWA FI DAN FIELD-DEPENDENT DALAM MEMECAHKAN MASALAH MATEMATIKA

Novita Eka Muliawati

Abstract


Penelitian ini bertujuan untuk mendeskripsikan profil matakognisi siswa SMA kelas X yang memiliki gaya kognitif FI dan gaya kognitif FD dalam memecahkan masalah matematika pada materi persamaan dan fungsi kuadrat. Subjek peneltian terdiri dari satu siswa FI dan satu siswa FD yang mempunyai kemampuan setara. Data penelitian yang dikumpulkan berupa hasil tes dan hasil wawancara. Analisis data dalam penelitian ini terdiri dari tiga tahapan yaitu reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa siswa FI dan FDmemiliki profil metakognisi yang sama pada tahap memahami masalah dan melaksanakan rencana pemecahan masalah. Sedangkan pada tahapan merencanakan pemecahan masalah dan memeriksa hasil pemecahan masalah, siswa FI dan FDmemiliki profil metakognisi yang berbeda

Keywords


metakognisi, FI dan field-dependent, masalah-non rutin

References


Ardana, I M. 2008. Model Pembelajaran Matematika Berwawasan Konstruktivis yang Berorientasi pada Gaya Kognitif dan Budaya. Jurnal Pendidikan dan Pengajaran, No.3 Th. XXXXI, Juli 2008

Atasoy, Bilal.,Somyurek, Sibel., Guyer, Tolga.. 2008. The Effect of Individual Differeces on Learner’s Navigation in a Courseware. The Turkish Online Journal of Educatinal Technology. Vol. 7, issue 2 article 4, pp. 32-40.

Baroody, A.J. 1993. Problem Solving, Reasoning, and Communicating K-8: helping Children Think Mathematically. New York: MacMillan Publishing Company.

Bruning, R.H., Schraw, G.J., & Ronning, R.R. 1995. Cognitive Psychology and Instruction (Second Edition). New Jersey: Prentice Hall.

Chamot, A.U., Dale, M., O’Malley, J.M., & Spanos, G.A. 1992. Learning and Problem Solving Strategies of ESL Students. Bilingual Research Journal, 16 (3&4): 1-34

Costa, A. L. 2001. Developing Minds A Resource Book for Teaching Thinking. 3rd Edition. Association For Supervision And Curriculum Development Alexandria, Virginia. 1703 N. Beauregard St. Alexandria, VA 22311-1714.

Dale H. Schunk. 2008. Learning Theories an Educational Perspective. Fifth edition. NewJersey: Pearson Education.

Darma, A.N. 20013. Proses Berpikir Siswa SMA dalam Memecahkan Masalah Matematika Materi Turunan Ditinjau Dari Gaya Kognitif FIdan FD. Jurnal Pedagogia, Vol. 2, No. 1, februari 2013.

Desmita. 2009. Psikologi Perkembangan Peserta Didik. Bandung: PT Remaja Rosdakarya.

Flavell, J.H. 1979. Metacognition dan Cognitive monitoring: A new Area of Cognitive-Developmental Inquiri. American Psychologist, 34 (10).

Kepner & Neimark. 1984. Test-Retest Realibility and Differential Patterns of Score Change on The Group Embedded Figure Test. Journal of Personality and Social Psychology, 46 (6), 1405-1413.

Messick, et al (eds). 1976. Individuality in Learning. San Fransisco. CA: Jossey-Bass

Mohammad Ibrahim, A.J. (2003). The Effect of Metacognitive Scaffholding and Cooperative Learning on Mathematics Performance and Mathematics Reasoning Among Fifth Grade Student in Jordan. Provide:http://search.yahoo.com/search?p=Metacognitive

+in+mathematics+ education+journal&fr=yfp-t-501&toggle=1&cop=mss&ei=UTF-8&vc=&fp_ip=ID.

National Council of Teacher Msathematics. (2000). Principles and Standards for Schools Mathematics. USA :Reston. V.A

O‟Brien, Terrance P., Butler, Susan M., dan Bernold, Leonhard E. 2001. Group Embedded Figures Test and Academic Achievement in Engineering Education. Int. J. Engng Ed. Vol. 17, No. 1, pp. 89-92

Panaoura, A. & Philippou, G. 2004. The Measyrement of Young Pupils’ Metacognitive Ability in Mathematics: The Case of Self-Representation and Self-Evaluation, (Online), (http://www.ucy.ac.cy)

Polya, G., 1973, How To Solve It, Second Edition, Princeton University Press, Princeton, New Jersey.

Rahman, Abdul. 2008. “Analisis Hasil Belajar Matematika Berdasarkan Perbedaan Gaya Kognitif dan konseptual Tempo pada Siswa Kelas X SMA Negeri 3 Makasar”.Jurnal Pendidikan dan Kebudayaan/ISSN 0215-2673/no.072.page 452-473

Romberg, T.A. 1994. Clasroom Instructionthat Foster mathematical Thinking and Problem Solving: Connections between Theory and Practice, dalam Mathematical thinking and Problem Solving. Editor: Schoenfeld, A.H.Hove, UK: Lawrence Erlbaum Associates, Publishers.

Schoenfeld. (Ed). (1987). “Cognitive Science and Mathematics Education”. Hillsdale .NJ: Lawrence Erlbaum Associates. Dalam http://mathforum.org/-sarah/Discussion.Sessions/Schoenfeld.html.

Silver, E. A. (1997). Fortering Creativity Through Instruction Rich in Problem Solving and Problem Possing. [online]. Tersedia: http://www.Fizkorlsruke.de/ Diakses 10 Desember 2014.

Umaru,Yunusa ,dkk.2013.”The Influence of Dependent and Independent Cognitive Styles on Achievement in Mathematics Among Senior Secondary School Students in Bida Educational Zone of Niger State, Nigeria”.Journal of Research in Education and Society/Volume 4/no.2.page 60-67

Walker, M. 2009. PISA 2009 Plus Results. Australia: Australian Council for Educational Research.

Witkin, H.A., C. A. Moore., D. R. Goodenough., & P. W. Cox. 1977. Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research. Winter 1977, Vol. 47, No. 1, 1-64.

Woolfolk, Anita E. 1998. Educational Psychology. Singapore: Allyn and Bacon.


Refbacks

  • There are currently no refbacks.


Jurnal Pendidikan dan Pembelajaran Matematika [JP2M]
Program Studi Pendidikan Matematika
STKIP PGRI Tulungagung
e-mail: jp2m@stkippgritulungagung.ac.id
Contact: +62822 3230 8788    ;     +62856 4646 9847

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.